پروژه سازه های بنایی

پروژه سازه های بنایی

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 15
فهرست مطالب:

چکیده:

1 – معرفی:

2) برنامه آزمایش:

2 ) روش بار گذاری:3) نتایج تست:

3 ) ظرفیت برشی لرزه ای:

1 ) مود محاسباتی:2 ) سهم برشی ایجاد شده توسط دیوار غیر مسلح «Vw »3 ) ظرفیت برشی دیوارهای مسلح شده با GFRP دارای ستون کمکی4 ) مؤلفه ی اندرکنش ستون کمکی ψ :5)مقایسه بین نتایج محاسبات و نتایج تست:6)معادلات طراحی ظرفیت برشی لرزه ای:

4 ) مقایسه بین نتایج:

5 ) نتایج:

چکیده:

با انجام آزمایشاتی روی 8 دیوار بنایی دارای ستون کمکی مسلح شده با فیبر پلیمر شیشه ای مسلح«GFRP »، ظرفیت برشی لرزه ای سازه دیوار بنایی آجری با جزئیات مورد بررسی قرار گرفت. اولاً، ضریب اندرکنش ستون کمکی ψ، ضریب اصلاح شده ، ضریب آماری β و ضریب شرکت پذیری موثر ζ محاسبه شده اند، سپس، براساس مدل شکست دیوار بنایی آجری و مدل خرپایی FRP ، فرمول ظرفیت برشی لرزه ای دیوار بنایی آجری با ستون کمکی مسلح شده با FRP برقرار شده است. که تشابه زیبایی با نتایج آزمایشگاهی بدست آمده از تست دارد. در نهایت فرمول طراحی ساده شده ظرفیت برشی لرزه ای در دیوار بنایی آجری مسلح شده با FRP در این مقاله پیشنهاد شده است. فرمول طراحی برای تحقیقات اضافی یا برای مراجع طراحی در سازه های بنایی آجری می تواند استفاده شود.

1 – معرفی:

استفاده از تکنولوژیهای مواد جدید در مرمت و مسلح کردن سازه های بنایی از نظر تکنیکی و اقتصادی بسیار جالب است. امروزه FRP شانسی جدید را برای آرزوی مرمت، با پیشرفتی قابل ملاحظه در تقویت سازه های بنایی غیر مسلح ارائه می دهد. اشوگلر اولین نفر در پیشنهاد و بررسی از فیبر پلیمر کربن مورق مسلح شده«CFRP » به عنوان ابزار تقویت سازه بنایی و ارائه یک مدل آنالیزی برای رفتار درون صفحه ای دیوار مسلح شده با CFRP در قاب تئوری ناحیه استرس بود. کار سعادت منش، احسانی و دیگران، بروی تحقیقات آزمایشگاهی روی نمونه های بنایی غیر مسلح شده تقویت شده با عضو شیشه ای چسبنده با اپوکسی، متمرکز شد. کلش روی سیستم مسلح شده خارجی ای شامل فیبر کربن برای دیوار های بنایی تست کرد. نمونه ها می توانند مانع، بارهای جانبی ای که برابر با نیروهای اینرسی تولید شده از شتاب 0.3g می باشد، شوند ترایتافیلو رفتار مکانیکی، دیوارهای بنایی غیر مسلح تقویت شده با ورق های FRP  چسبانده شده از خارج ( یا تسمه ها) با استفاده از مدلسازی ساده و بدست آوردن ظرفیت برشی سازه بنایی تقویت شده با ورق های FRP را بررسی کرد. والوزی یک سری تستهای فشرده روی پنل های بنایی تقویت شده با ورق های FRP انجام داد. در این تست 2 شکل مسلح کردن کشف شد: تسمه های ترتیب  شبکه ای یا کاربرد تسمه های قطری عمود بر قطر بار گذاری شده.سیچی و دیگران، مدلی برای سازه های بنایی مسلح شده با CFRP به وسیله ی روشهای مخلوط کنی پیشنهاد کرد. استرادفورد و دیگران اثر مد مسلح واثر دادن تساویهای طراحی ظرفیت برشی دیوار مسلح شده با FRP  را بررسی کرد. با وجود تحقیقات زیاد گذشته، فرمولی که برای محاسبه ی ظرفیت عمل نیروی برشی دیوار مسلح شده با FRP ایجاد شده بود در بیان شکلها و فاکتورها در نظر گرفته شده که در زیر ارائه شده، کمبود دارد:

فرمولها ( فرمولهای مود قطری) فقط مناسب دیوارهای بنایی مسلح شده با ورق های قطری است که برای دیوارهای بنایی مسلح با ورق های افقی یا هر دو ورقهای قطری و افقی بی نیاز است.از زمانیکه فرمولهای مود قطری در نظر گرفته شده است ، اثر مولفه ی عمودی نیروهای ایجاد شده توسط ورق های قطری، روی ظرفیت برشی نامیده گرفته شده است.تمام فرمولهایی که ایجاد شده است بر اساس دیوارهای بنایی مسلح شده با FRP با مقاطع مستطیلی همانطور برای دیوار بنایی مسلح شده با ستون کمکی است، هیچ محاسبات مربوطی ارائه نشده است.

به منظور رفع کمبودهای فرمولهای کنونی 8 قسمت از دیوارهای آجری بنایی با ستون های کمی تقویت شده توسط GFRP و یک قسمت برای دیوار بنایی معمولی با ستون کوتاه اجرا شده است و محاسبات مربوطه و فرمولهای طراحی بر اساس سیستم تقویت شده خرپای FRP تولید شده است.

 



خرید و دانلود پروژه سازه های بنایی


پایان نامه ی بررسی اندرکنش خاک و سازه در سازه های بنایی. pdf

پایان نامه ی بررسی اندرکنش خاک و سازه در سازه های بنایی. pdf

 

 

 

 

 

 

نوع فایل: pdf

تعداد صفحات: 140 صفحه

 

نکته مهم: برای دریافت فایل پایان نامه به صورت word «قابل ویرایش» با ما تماس بگیرید.

 

پایان نامه برای دریافت درجه ی کارشناسی ارشد «M.SC»

 

چکیده:

در تحلیل های سازه، عموماً فرض بر این است که خاک زیر شالوده صلب بوده و شالوده به زمین به صورت کاملاً گیردار درگیر است، در این فرض نه تنها از انعطاف پذیری خاک، صرف نظر می شود بلکه به امکان بلند شدگی شالوده از سطح زمین توجهی نمی گردد. در حالیکه اگر اندرکنش خاک و سازه در تحلیل ها در نظر گرفته شود، سیستم جدیدی ناشی از برکنش سازه در تکیه گاه انعطاف پذیر تشکیل خواهد شد که رفتار آن متفاوت با حالت قبل خواهد بود. پس از اعمال این اثرات بر روی سازه، مشاهده می شود که تاثیر پدیده اندرکنش خاک و سازه بر روی رفتار سازه، ممکن است بسته به خصوصیات خاک و سازه، به صورت کاهیدگی و تقلیل و یا به صورت تقویت و افزایش باشد و در نظر نگرفتن این رخدادها به عنوان شرایط تکیه گاهی در روش های مقاوم سازی و طراحی سازه های جدید از قابلیت اعتماد به طراحی سازه می کاهد. تا آنجا که بعضی از آیین نامه های طراحی لرزه ای که در مورد سازه های معمولی به کار می روند، کاهش معینی را در بار استاتیکی معادل برای منظور کردن اثر کنش در حالتی که پی ساختمان صلب در نظر گرفته می شود، مجاز می دانند. در مطالعه حاضر، به بررسی اندرکنش خاک و دیوار بنایی، با در نظر گرفتن شرایط بارگذاری جانبی و فشاری متفاوت و همچنین مشخصات مختلف خاک زیر دیوار پرداخته می شود و به تاثیر پارامترهای مختلف خاک بر رفتار دیوار بنایی پرداخته می شود.

 

کلمات کلیدی : اندرکنش خاک و دیوار بنایی- خاک انعطاف پذیر-  بارگذاری جانبی- رفتار دیوار بنایی

 

مقدمه:

ساختمان های مصالح بنایی یکی از قدیمی ترین سیستم های سازه ای هستند که از گذشته های دور تاکنون رایج بوده اند. حدود 70 درصد ساختمان های موجود کشور ما و همچنین در سراسر جهان، ساختمان های بنایی می باشد. تجربه های زلزله های گذشته، به خصوص زلزله بم، آسیب پذیری بسیار زیاد این ساختمان ها را نشان داده است. عدم درک درست از چگونگی تسلیم و رفتار سازه های بنایی و اجزای آن در محدوده غیر ارتجاعی می تواند منجر به بروز اشکالات اساسی در رفتار لرزه ای سازه گردد. به همین دلیل یکی از مهم ترین مسائل جامعه مهندسی، ارزیابی لرزه ای و بهسازی این نوع سازه ها در مقابل زلزله های محتمل می باشد.

پاسخ دینامیکی سازه متاثر از حرکت لایه های خاک زیرین و از طرف دیگر، پاسخ یا رفتار تنش-تغییر شکل لایه های خاک زیرین تحت تاثیر حرکت سازه است. در حالت کلی، نشست پی بعد از اعمال بار لرزه-ای نسبت به حالت استاتیکی تغییر می کند، لیکن در خاک های ماسه ای سست این اثرات از اهمیت قابل توجهی برخوردار است که منجر به تغییر در نیروهای داخلی اعضای سازه (در جهت یا خلاف جهت اطمینان)، نسبت به حالتی که از اثر اندرکنش خاک-سازه صرف نظر می شود، خواهد شد.

اندرکنش بین سازه و محیط خاک تکیه گاهی آن، رفتار واقعی سازه را به طور قابل توجهی در مقایسه با رفتار سازه با تکیه گاه صلب، تغییر می دهد. بنابراین یک مدل کارآمد و با دقت معقول از سیستم اندرکنش خاک-سازه جهت تحلیل سازه مورد نیاز است.

تجربیات گذشته نشان می دهد که خاک زیر پی، بر روی رفتار دینامیکی سازه تاثیر می گذارد. پاسخ دینامیکی سازه حین لرزه های اعمالی، متغیری از نوع خاک بوده، لذا بدون در نظر گرفتن تاثیر آن نمی توان تخمین واقع گرایانه ای از نیروهای اعمالی زلزله بر سازه داشت [1].

همچنین خصوصیات محلی خاک مانند جنس خاک، لایه ای بودن خاک و نیز تغییرات عمق لایه از عوامل موثر بر رفتار لرزه ای سازه می باشد که باید مورد بررسی قرار گرفته و نیز در تحلیل سازه لحاظ گردد [2]. بنابراین به نظر می رسد بررسی رفتار لرزه ای سازه بدون لحاظ نمودن اثر خاک منجر به نتایج واقعی نخواهد شد. در سال های اخیر تحقیقات وسیعی انجام گرفته است تا این اثر دقیق تر مورد بررسی قرار بگیرد. به دلیل وجود پارامترهای بی شماری که اکثراً غیر خطی می باشند [7]. بررسی اندرکنش خاک و سازه را به کمک مدل های غیر خطی خاک اجتناب ناپذیر می سازد.

از جمله مهم ترین مسائل در تحلیل پدیده اندرکنش خاک و سازه، ارائه یک مدل مناسب می باشد. به منظور بررسی پدیده اندرکنش خاک و سازه در زمان وقوع زلزله روش های مختلفی با دقت و پیچیدگی متفاوت جهت ارائه مدل تحلیلی مناسب مطرح شده است. برای زمانی که مدل سازی خاک لایه ای مورد نظر باشد می توان از روش های زیر استفاده نمود [2].

الف- در نظر گرفتن خاک به صورت جرم، فنر و کمک فنر (میرایی)، معدل در پی سازه.

ب- در نظر گرفتن خاک به صورت تیر برشی با جرم پیوسته و یا متمرکز و سختی گسترده.

د- مدل نمودن خاک به صورت مدل اجزاء محدود.

در مواردی که لایه های خاک در جهات افقی و عمودی قرار گرفته باشند و نیز بررسی رفتار غیر خطی خاک ضروری باشد، می توان از مدل اجزاء محدود استفاده نمود تا اثر لایه بندی را در تحلیل، دخالت داد. بدین ترتیب، خطای ناشی از در نظر گرفتن رفتار خطی (ارتجاعی) برای خاک، که در سایر روش های مدل سازی مانند روش تیر برشی وجود دارد از بین خواهد رفت [8]. در این روش می توان علاوه بر مدفون شدگی پی، لایه بندی خاک در جهات افقی و عمودی را نیز در تحلیل وارد نمود. در مدل سازی اجزاء محدود خاک لایه ای جهت اطمینان از صحت پاسخ فرض شده است که خاک طویل و کم عرض باشد.

 

فهرست مطالب:

فصل اول : کلیات

1-1 مقدمه

1-2 اهداف پژوهش حاضر

فصل دوم : مروری بر مطالعات پیشین

2-1 مقدمه

2-2 عملکرد ساختمانهای بنایی در برابر زلزلههای گذشته

2-3 انواع ساختمانهای آجری

2-4 رفتار ساختمانهای بنایی غیر مسلح

2-4-1 رفتار دیوارهای آجری

2-5 مروری بر تحقیقات گذشته و آزمایشات انجام شده

2-5-1 رفتا دیوارهای آجری تحت بارهای یکنواخت

2-5-2 رفتار دیوارهای آجری، تحت بارهای رفت و برگشتی

2-5-3 آزمایشهای بارگذاری دینامیکی

2-5-4 آزمایشهای بارگذاری دینامیکی و استاتیکی

2-5-5 آزمایشهای بارگذاری استاتیکی

2-6 فاکتورهای اثرگذار در دیوارهای برشی بنایی

2-6-1 مسلح سازی

2-6-2 فشار محوری

2-6-3 نسبت ابعاد هندسی

2-6-4 ویژگیهای مصالح

2-7 مروری بر تئوریهای خرابی توسعه داده شده

2-7-1 مروری بر سطوح تسلیم ارائه شده در فضای تنش سه بعدی

2-8 مروری بر پژوهشهای گذشته در روشهای مدل سازی مصالح بنایی

2-9 مروری بر تحقیات انجام شده در روش قاب معادل

فصل سوم : مدل سازی به روش عناصر محدود

3-1 مقدمه

3-2 تحلیلهای غیرخطی در نرمافزار ABAQUS

3-2-1 رفتار غیرخطی مصالح

3-2-2 رفتار غیرخطی هندسی

3-3 مبانی تحلیل صریح

3-3-1 گام زمانی بحرانی

3-4 المان مورد استفاده در مدل سازی عناصر محدود

3-5 معیار تسلیم مورد استفاده برای مصالح

3-6 تعریف متغیرهای سطح جاری شدن و پارامترهای سختشوندگی

3-7 شرایط اولیه و المانها

3-8 معیار تسلیم دراکر پراگر

3-9 معیارهای گسیختگی

3-10 تصدیق مدل براساس مرجع [56]

فصل چهارم : مطالعه پارامتریک جهت بررسی اندرکنش خاک و سازه

4-1 مقدمه

4-2 رفتار درون صفحهای دیوارها و پایههای مصالح بنایی

4-3 روند انجام مطالعات پارامتریک

4- 3- 1 مشخصات نمونههای تحلیلی

4-4 نحوه اعمال بارگذاری

4-5 نتایج بهدست آمده از مدلهای تحلیلی

4-5-1 نتایج بهدست آمده از مطالعات تحلیلی مدلهای F1 تا F7 مطابق بار Load1

4-5-1-1 مقایسه نتایج بهدست آمده از مطالعات تحلیلی مدلهای F1 تا F7 با مدلF1  در الگوی بار Load1

4-5-2 نتایج بهدست آمده از مطالعات تحلیلی مدلهای FR1 تا FR7 مطابق بار Load2

4-5-2-2 مقایسه نتایج بهدست آمده از مطالعات تحلیلی مدلهای FR1 تا FR7  با مدلFR1  در الگوی بار Load2

4-5-3 مقایسه نتایج بهدست آمده از مطالعات تحلیلی مدلهای F و  FRدر دو الگوی بار Load1 و Load2

4-5-4 نتایج بهدست آمده از مطالعات تحلیلی مدلهای S1 تا S4 مطابق بار Load1

4-5-5 نتایج بهدست آمده از مطالعات تحلیلی مدلهای SR1 تا SR4 مطابق بار Load2

4-5-6 مقایسه نتایج بهدست آمده از مطالعات تحلیلی مدلهای S و  SRدر دو الگوی بار Load1 و Load2

4-6 نتیجهگیری

4-7 توصیههایی برای مطالعات آتی

 

فهرست جداول:

جدول 4-1 : مشخصات خاک با مدل کلاهکی دراگر پراکر اصلاح شده

جدول 4-2 : مشخصات خاک با مدل دراگر پراکر

جدول 4-3 : الگوهای بارگذاری Load1 و Load2

جدول 4-4 : نتایج تحلیل اجزاء محدود نمونههای F1 تا F7 تحت بارگذاری Load1

جدول 4-5 : تغییرمکان نهایی و نیز لحظه شروع مکانیزم شکست نمونههای F1 تا F7

جدول 4-6 : نتایج تحلیل اجزاء محدود نمونههای FR1 تا FR7 تحت بارگذاری Load2

جدول 4-7 : تغییرمکان نهایی و نیز لحظه شروع مکانیزم شکست نمونههای F1 تا F7

جدول 4-8 : درصد تغییرمکان نمونهها در حالت الگوی بار Load2

جدول 4-9 : نتایج تحلیل اجزاء محدود نمونههای S1 تاS4  تحت بارگذاری Load1

جدول 4-10 : نتایج تحلیل اجزاء محدود نمونههای SR1 تا SR4 تحت بارگذاری Load2

جدول 4-11 : درصد تغییرمکان نمونهها در حالت الگوی بار   Load2به الگوی بار  Load1

 

فهرست اشکال :

شکل 2-1 : رفتار دیوارها تحت بار یکنواخت

شکل 2-2 : ترکهای ایجاد شده تحت بار یکنواخت

شکل2-3 : ترکهای ایجاد شده در دیوار نوع یک

شکل 2-4 : منحنی رفتار دیوار نوع یک

شکل 2-5 : ترکهای ایجاد شده در دیوار نوع دو

شکل 2-6 : منحنی رفتار دیوار نوع دو

شکل 2-7 : اثر ابعاد هندسی در مود خرابی

شکل 2-8 : سطح خرابی بنایی (داناسکار 1985)

شکل 2-9 : پوش خرابی بنایی (ژوک 1995)

شکل 2-10 : منحنی تنش-کرنش بکار رفته توسط پیج 1978 برای فشار تک محوری

شکل 2-11 : سطح خرابی چسبندگی بکار گرفته شده توسط پیج 1978

شکل 2-12 : پوش خرابی برای خرابی چسبندگی (علی و پیج 1988)

شکل 2-13 : نتایج مدل سازی پاستیسیر 2007

شکل 3-1 : حل مستقیم در مقایسه با روش نیوتن رافسون

شکل 3-2 : گام های یک بارگذاری

شکل3-3 : تقسیم گام های بارگذاری به قسمت های مختلف

شکل 3-4 : المان SOLID در نرم افزار ABAQUS

شکل 3-5 : مدل دراکرپراگر اصلاح شده (کلاهکی)

شکل 3-6  : سطح جاری شدن در صفحه انحرافی

شکل 3-7  : نمونه سخت شوندگی مدل کلاهکی

شکل 3-8 : نمودارهای تنش _ کرنش

شکل 3-9 : سطوح تسلیم رفتارهای مختلف

شکل 3-10 : مدل خطی دراکر پراگر و پارامترهای تعریف آن

شکل 3-11 : حدود مقادیر K در صفحه تنش های اصلی

شکل 3-12 : چگونگی سخت شدگی در مدل دراکر پراگر و تعریف زاویه اتساع

شکل 3-13 : نحوه انجام آزمایش سه محوری کششی و فشاری

شکل 3-14 : توابع تسلیم در مدل های خطی، هیبربولیک و عمومی

شکل 3-15 : دستگاه برپایی آزمایش

شکل 3-16 : یک نمونه مدل سازی شده در نرم افزار اجزاء محدود ABAQUS

شکل 3-17 : مقایسه نتایج آزمایشگاهی و عددی

شکل 4-1  : مودهای شکست حاکم بر رفتار دیوارهای با مصالح بنایی

شکل 4-2 : مشخصات ابعاد نمونه

شکل 4-3 : نمونه مدل سازی شده در نرم فزار المان محدود ABAQUS

شکل4-4 : مکانیزم شکست برای نمونه  F1

شکل 4-5 : نمودار تغییرمکان محل اعمال بار فشاری

شکل 4-6 : نمودار انرژی نمونه F1

شکل 4-7 : نمودار تغییرمکان مدل های F1 تا F7

شکل 4-8 : نمودار انرژی مدل های F1 تا F7

شکل 4-9 : مکانیزم شکست نمونه F7

شکل 4-10 : نسبت تغییرمکان نهایی سایر نمونه ها به نمونه F1

شکل 4-11 : مکانیزم شکست نمونه FR1

شکل 4-12 : نمودار تغییرمکان نمونه FR1 در طول بارگذاری

شکل 4-13 : نمودار انرژی نمونه FR1

شکل 4-14 : نمودارهای تغییرمکان مدل های FR1 تا FR7

شکل 4-15 : نمودارهای انرژی مدل های FR1 تا FR7

شکل 4-16 : مکانیزم شکست برای نمونه FR7

شکل4-17 : نسبت تغییرمکان نهایی سایر نمونه ها به نمونه FR1

شکل4-18 :  نسبت درصد تغییرمکان نمونه ها در حالت الگوی بار  Load2به الگوی بار  Load1

شکل4-19 : مکانیزم شکست برای نمونه  S1

شکل4-20 : نمودار انرژی برای نمونه  S1در طول بارگذاری

شکل4-21 : مکانیزم شکست برای نمونه  S2

شکل 4-22 : مکانیزم شکست برای نمونه  S4

شکل 4-23 : تغییرمکان نمونه ها در مراحل بارگذاری

شکل 4-24 : نمودار انرژی نمونه های S2  و S3 و S4

شکل 4-25 : مکانیزم شکست نمونه SR1

شکل 4-26 :  نمودار انرژی نمونه SR1

شکل 4-27 : مکانیزم شکست نمونه SR2

شکل 4-28 : مکانیزم شکست نمونه SR3

شکل 4-29 : مکانیزم شکست نمونه SR4

شکل 4-30 : نمودارهای تغییرمکان مدل های SR1 تا SR4

شکل 4-31 : نمودارهای انرژی مدل های SR1 تا SR4

شکل4-32 : نسبت درصد تغییرمکان نمونه ها در حالت الگوی بار  Load2به الگوی بار  Load1

 

منابع و مأخذ:

قناد، م. ع.، 1379، "اثر برهم کنش خاک و سازه بر طراحی ساختمان ها در برابر زلزله"، مجله زمین لرزه، ش.هشتم، ص. 14-20.برگی، خ.، 1379، "اصول مهندسی زلزله"، موسسه انتشارات و چاپ دانشگاه تهران، چاپ سوم."دستورالعمل بهسازی لرزه ای ساختمان های بنایی غیر مسلح موجود"، 1386، سازمان مدیریت و برنامه ریزی، نشریه ش.376.بربریان، ا.، 1374، "اولین کاتالوگ زلزله و پدیده های طبیعی ایران زمین"، انتشارات موسسه بین-المللی زلزله شناسی و مهندسی زلزله، تهران.مقدم، ح.، 1373، "طرح لرزه ای ساختمان های آجری"، انتشارات دانشگاه صنعتی شریف، تهران.ناطقی الهی، ف.، کوهیان افضلی، ر.، 1375، "مقاوم سازی ساختمان های آجری غیر مسلح موجود"، گزارش موسسه بین المللی زلزله شناسی و مهندسی زلزله، تهران.Kramer, L., 1996, “Geotechnical Earthquake engineering.”, Prentice Hall.Wolf, J., 1997, “Spring-Dashpot-Mass Models for Foundation Vibrations.”, Earthquake Engineering and Structural Dynamics, Vol.26, pp.931-949.Clough, R.M., Gulkan, P., 1979, “Shaking table of study single-story masonry houses.”Scawthron, C.A., 1986, “Relative benefits of alternative strengthen methods for law strength masonry building.”, Proceeding of 3rd U.S Nathional Conference on Earthquake Engineering.Tomazovic, M., Modena, T., 1990, “The influence of structural layout and reinforcement on the seismic behavior of masonry building: An experimental study.” The Masonry Journal, Vol.9.Paulson, T., Abrams, D., 1990, “Measured inelastic response of reinforced masonry building structure to earthquake motions.”, SRS, No.555.18 Pomonis, A.,Taylor, c., 1992, “Shaking table tests on strong motion damaging upon unreinforced masonry.”, Proceeding Of The 10th World Conference Earthquake Engineering., Vol.6.Tomazevic, M., Lutman, M., 1994, “Influence of floors and connection of walls seismic resistance of old brick masonry houses: part 1: Shaking tests of models C and D.”, ZRMK/P1, Ljubljana.Magnes, G., Calvi, G., 1994, “Shaking table tests on brick masonry walls.”, Proceeding Of The 10th World Conference Earthquake Engineering.Costley, A., Abrams, D.P, 1996, “Dynamic response of unreinforced masonry building with flexible diaphragms.”, NCEER- 96-0001.Calvi, M., Magenes, A., 1994, “Large scale seismic testing of an unreinforced masonry building.”, Proceeding Of 5th U.S National Conference On Earthquake Engineering, Vol.1.Bendetti, D., Castoldi, A., 1998, “ Dynamic and static experimental analysis of masonry buildings.”, Proceeding of 7th European conference on earthquake engineering.Calderini, Ch., Cattari, S., 2009, “In-plane strength of unreinforced masonry piers.”, Earthquake Engineering and Structural Dynamics, Vol.38, pp.243-267.Mullins, P.J., O`Connor, C., 1994, “The capacity of unreinforced unbounded brick shear walls.”, 10th International Brick/Block Masonry conference, Calgary, Canada, pp.1037-1046.Lotfi, H.R., Shing, P.B., 1991, “An appraisal of smeared crack models for masonry shear wall analysis.” , Computers and Structures, Vol. 41(3): pp.413-425.Maleki, M., El-Damatty, A., Hamid, A., Drysdale, R.G., 2005, “Finite element analysis of reinforced masonry shear walls using smeared crack model.”, Proceeding of the 10th Canadian Masonry Symposium.Page, A.W., 1982, “An experimental investigation of the biaxial strength of brick masonry.”, 6th International Brick Masonry Conference, Rome, Italy., pp.3-15.Dhanasekar, M., Kleeman, P.W., Page, A.W., 1985, “Biaxial stress-strain relations for brick masonry.”, Journal of Structural Engineering, ASCE, Vol.111(5), pp.1085-1100.Zhuge, Y., 1995, “Nonlinear dynamic response of unreinforced masonry under inplane lateral loads.”, PhD Thesis, Queensland University of Technology, Australia.Lourenco, P.B., 1996, “Computational strategies for masonry structures.”, PhD Thesis, Delft University, Netherlands.Page, A.W., 1978, “Finite element models for masonry.”, Journal of structural Divisions, ASCE, Vol.104(8), pp.1267-1285.Ali, s., Page, A.w., 1988, “Finite element models for masonry subjected to concentrated loads.”, Journal of Structural Engineering, ASCE, Vol.114(8), pp.1761-1783.Ghosh, A.K., Made, A.M., Colville, J., 1994, “Finite element modeling of unreinforced masonry.”, 10th International Brick/Block Masonry Conference, Calgary, Canada, pp.61-69.Shing, P.B., Brunner, j.D., Lotfi, h.r., 1993, “Analysis of shear strength of reinforced masonry walls.”, Proceedings of the 6th North American Masonry Conference, pp.1133-1144.Riddington, J.R., Noam, N.F., 1994, “Finite element prediction of masonry compressive strength.”, Computers and Structures, Vol.113-119.Khattab, M.M., Drysdale, R.G., 1994, “Nonlinear modeling of the shear response of grouted and reinforced concrete masonry.”, 10th International Brick/Block Masonry conference, Calgary, Canada, pp.1047-1056.Lotfi, H.R., Shing, P.B., 1994, “Interface model applied to fracture of masonry structures.”, Journal of Structural Engineering, ASCE, Vol.120(1), pp.63-80.Lourenco, P.B., Brost, R.D., Rots, J.G., 1997, “A plane stress softening plasticity model for orthotropic materials.” International Journal for Numerical Methods in Engineering, Vol.40, pp.4033-4057.Sayed-Ahmed, E.Y., Shrive, N.G., 1995, “Numerical analysis of face shell bedded hollow masonry walls subject to concentrated loads.”, Canadian Journal of Civil Engineering, Vol.22(4), pp.802-819.Zhuge, Y., Thambiratnum, D., 1998, “Nonlinear dynamic analysis of unreinforced masonry.”, Journal of Structural Engineering, ASCE, Vol.124(3), pp.270-277.Pande, G., Liang, J.X., Middleton, J., 1990, “Equivalent elastic moduli for brick masonry.”, Computers and Geotechnics, Vol.8, pp.243-265.Bosiljkow, V., 2004, “Structural modeling for the assessment of the load bearing capacity of the masonry.”Gambarotta, L., Lagomarsino, S., 1997, “Damage models for the seismic response of brick masonry shear walls. Part 2: The continuum model and its applications.”, Earthquake Engineering and Structural Dynamics, Vol.26, pp.441-462.Toamzevic, M., Turnsek, 1982, “Verification of the seismic resistance of masonry buildings.”, br, Ceram.soc, No.30.Magnese, G.A., “A method for pushover analysis in seismic resistance of masonry buildings.”, 12WCEE.Andreas, J. Kappos, Gregory, G. Penelis, Christos, G. Drakopoulos, 2002, “Evaluation of simplified models for lateral load analysis of unreinforced masonry buildings.”, Journal of Structural Engineering.Salonikios, T., Karakostas, C., Lekidis, V., Anthonie, A., 2003, “Comparative inelastic pushover analysis of masonry frames.”, Journal of Structural Engineering, Vol.25, pp.1515-1523.Cardoso, R., Lopes, M., Bento, R., 2005, “Seismic evaluation of old masonry buildings: Part 1: method description and application to a case-study.”, Journal of Structural Engineering, Vol.27(14), pp.2024-2035.Vincenzo, M., Malvezzi, R., 2006, “2-D non-linear seismic analysis of a historical masonry building in Ferrara.” Journal of Structural Engineering.Belmouden, Y., Lestuzzi, P., 2007, “ An Equivalent frame model for seismic analysis of masonry and reinforced concrete buildings.” Construction and Building Materials.Laurent, P., 2008, “ Non-linear seismic analysis and vulnerability evaluation of a masonry building by means of the sap 2000, V.10 code.”, Earthquake Engineering and Structural Dynamics, Vol.37, pp.467-485.Magenes, G., 2006, “Masonry Building Design In Seismic Areas: Recent Experiences And Prospects From A European Standpoint.”, 1st European Conference On Earthquake Engineering And Seismology, Geneva, Switzerland.FEMA 306, 1998, “Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings Basic Procedures Manual.”FEMA 356, 2000, “pre-standard and Commentary for The Seismic Rehabilitation of Buildings.”

 



خرید و دانلود پایان نامه ی بررسی اندرکنش خاک و سازه در سازه های بنایی. pdf