بانک ها به منظور تعیین ریسک اعتباری و ارائه خدمات مالی به مشتریان خود نیازمند شتاسایی دقیق آنها هستند.مدل های اعتبار سنجی میتوانند در این زمینه به پشتیبانی از بانک ها بپردازند. درختان تصمیم گیری به عنوان یکی از تکنیک های داده کاوی کاربرد زیادی در اعتبار سنجی مشتریان بانک ها و اعطای تسهیلات اعتباری به آنها دارند. مسئله اصلی .....
چکیده
بررسی ومطالعه ی کامل داده کاوی و داده کاوی با SQL SERVER2005 پیاده سازی آن روی بانک اطلاعاتی دانشگاه آزاد قوچان
امروزه با گسترش سیستم های پایگاهی و حجم بالای داده ها ی ذخیره شده در این سیستم ها ، نیاز به ابزاری است تا بتوان داده های ذخیره شده را پردازش کرد و اطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد.
داده کاوی یکی از مهمترین روش ها ی کشف دانش است که به وسیله آن الگوهای مفید در داده ها با حداقل دخالت کاربران شناخته می شوند و اطلاعاتی را در اختیار کاربران و تحلیل گران قرار می دهند تا براساس آنها تصمیمات مهم و حیاتی در سازمانها اتخاذ شوند.داده کاوی را تحلیل گران با اهداف گوناگونی از قبیل کلاس بندی, پیش بینی, خوشه بندی ,تخمین انجام می دهند. برای کلاس بندی, مدل هاو الگوریتم هایی مانند قاعده ی بیز, درخت تصمیم, شبکه ی عصبی, الگوریتم ژنتیک مطرح شده است.برای پیش بینی مدل رگرسیون خطی ومنطقی و برای خوشه بندی الگوریتم های سلسله مراتبی و تفکیکی, وبرای تخمین مدل های درخت تصمیم و شبکه ی عصبی مطرح می شود. در فصل دوم و سوم با الگوریتم ژنتیک که یکی از الگوریتم های داده کاوی و با شبکه ی عصبی که یکی از مدل های داده کاوی هستند آشنا می شویم .درفصل چهارم به محاسبات نرم و برخی از اجزای اصلی ان و نقش آنها در داده کاوی می پردازیم.
در فصل پنجم با ابزارهای داده کاوی آشنا می شویم . برای داده کاوی ابزارهای متنوعی وجود دارد. می توان ابزارداده کاوی را با تطبیق آن ابزار با داده های مسئله و با توجه به محیط داده ای که می خواهید از آن استفاده کنید، و امکاناتی که آن ابزار دارد انتخاب کنید.وسپس به داده کاوی با SQLSERVER2005 می پردازیم .ودرفصل ششم به داده کاوی با SQL SERVER2005 روی بانک اطلاعاتی دانشگاه آزاد قوچان پرداختیم.
کلمات کلیدی ،کلاس بندی ، خوشه بندی ، پیش بینی ، تخمین
فرمت فایل: ورد (قابل ویرایش)
تعداد صفحات: 217
خوشه بندی سلسله مراتبی تکنیکی است که در گروهبندی یا دسته بندی داده ها به کارمی رود. نقاط داده ها در این روش در دسته ها و زیر دسته هایی بر اساس معیار شباهت قرار می گیرند.
در روش خوشه بندی سلسله مراتبی، به خوشههای نهایی بر اساس میزان عمومیت آنها ساختاری سلسله مراتبی، معمولا به صورت درختی نسبت داده میشود. به این درخت سلسله مراتبی دندوگرام (dendogram) میگویند. روش کار تکنیکهای خوشهبندی سلسلهمراتبی معمولا بر اساس الگوریتمهای حریصانه (Greedy Algorithms) و بهینگی مرحلهای (stepwise-optimal) است. روشهای خوشهبندی بر اساس ساختار سلسله مراتبی تولیدی توسط آنها معمولا به دو دسته زیر تقسیم میشوند:
• بالا به پایین (Top-Down) یا تقسیم کننده(Divisive)
• پایین به بالا (Bottom-Up) یا متراکم شونده (Agglomerative)