پایان نامه درباره حفاری (تونل سازی)

پایان نامه درباره حفاری (تونل سازی)

متن کامل (همراه با تمام ضمائم) : پایان نامه درباره حفاری (تونل سازی) 122 صفحه با فرمت ورد

 

 

 

 

فصل اولمطالعات مقدماتی و اصول عمومی طراحی فضاهای زیرزمینی
فصل دومطـراحی چنـدفضـای زیـرزمینی مجـاور هم
فصل سوم روش طراحی سازه‌های زیرزمینی
فصل چهارمتفاوتها و ویژگیهای تونلهای معدنی و راهفصل ششمروشهای نـگهـداری تـونلهای معـدنی و راه فصل پنجمحـفـاری تـونـلهـای مـعـدنـی و راه

 

اگر حفر قنوات بخشی از عرضه تونلسازی محسوب شود آنگاه قدمت این فن به 2800 سال قبل از میلاد بر می‌گردد. زیرا باستان‌شناسان معتقدند که حفر قنوات در مصرو ایران از آن زمانها معمول بوده است. تذکر این نکته در اینجا در خور توجه است که در سال 1962 طول کل قنوات در ایران را 000/160 کیلومتر تخمین زده‌اند. اگر از این مورد که ذکر شد صرفنظر شود اولین تونل زیرآبی در 2170 سال قبل از میلاد در زمان بابلیها در زیر رودخانه فرات و بطول یک کیلومتر ساخته شد که هر چند بصورت حفاری تونل اجرا نشده است ولی همین، کار حداقل تجربه و تبجر معماران آن عصر را نشان می‌دهد. از این نوع کار دیگر اجرا نشده است تا 4000 سال بعد که در 1825 تونل تیمز زیر رودخانه تیمز ندن ساخته شد. تونل‌زنی درون سنگها به علت شکل حفاری و عدم امکانات و عدم نیاز ـ به جز موارد بسیار محدود ـ فقط در دو قرن اخیر توسعه یافته اس. هر چند اختراع باروت به قرنها قبل بر می‌گردد و بعضی آنرا حتی به قرن دوم میلادی نسبت می‌دهند ولی کاربرد آن در شکستن سنگها احتمالاً در قرن 16 بوده است و اختراع دینامیت در قرن 19 موجب تحولات تدریجی ولی اساسی در سهولت ایجاد تونل در سنگها شد گرچه ایجاد تونل در سنگها به علت سختی سنگ نیاز به مواد منفجره و یا وسایل بسیار سخت و برنده دارد ولی در سنگهای خیلی نرم و در رسوبات سخت نشده، مشکل تونل‌زنی به لحاظ نگهداری تونل است. بطوری که تا قبل از اختراع شیلد توسط در سال 1812، ایجاد تونلهای بزرگ مقطع در رسوبات سست فوق‌العاده مشکل می‌نمود. اولین کاربرد شیلد در 1825 در حفر تونل زیر رودخانه تیمز بود. هر چند حفر این تونل 5/1 کیلومتری حدود 18 سال طول کشید روش شیلد بعداً توسط تکمیل گردید و بعلاوه نامبرده کاربرد هوای فشرده را نیز در شیلد عملی ساخت (1886) با گسترش شهرها، اختراع ترنها، افزایش جمعیت، پیشرفت صنایع و نیاز مبرم به معادن گسترش شبکه‌های زیرزمینی، هم به منظور عبور و مرور و هم بمنظور انتقال آب و فاضلاب و نیز در پیشروی معادن و غیره ضرورت یافت و با سرعت روز افزون از اواخر قرن 19 تاکنون پیشرفتهای چشمگیری حاصل گردیده است. بگونه‌ای که در سالهای اخیر استفاده از ماشینهای حفر تمام مقطع تونل رشد سریعی داشته است. ایده استفاده از این ماشینها از زمانهای دور است. اولین ثبت شده در امریکا توسط جان ویلسون در سال 1856 برای تونل هوساک در ماساچوست بوده است ولی تنها توانسته 3 متر از تونل 7600 متری را حفر نماید در دهه‌های اخیر توسعه بسیار زیادی پیدا کرده بطوری که در بسیاری از موارد بعنوان اولین گزینه برای حفر تونل می‌باشد.

 

مقدمه

در جمع‌اوری و تهیه اطلاعات موردنیاز برای طراحی هر نوع حفاری زیرزمینی پس از انجام مطالعات اقتصادی و فنی (امکان‌پذیری مقدماتی طرح) پی‌جوئیهای لازم و مقایسه‌گرینه‌های مختلف و انتخاب راه‌حل مطلوب مقدماتی که برای دسترسی به هدف موردنظر ممکن می‌باشد، مطالعات مقدماتی و تفصیلی زمین‌شناسی و اقلیم‌شناسی منطقه اجرای طرح بایستی توسط مهندسین مشاور ذیصلاح پذیرد.

اقدام به جمع‌آوری این اطلاعات و انجام مطالعات، اولین اقدام لازم در طراحی هرگونه فضای زیرزمینی بهر نوع و بهر شکل و برای هر هدفی که باشد خواهد بود شناخت زمین‌شناسی محل احداث سازه، زیرزمینی از دیدگاه تنش‌های موجود و بارهای وارده بر وسائل نگهداری و انتخاب روش‌های کاربردی مطلوب حائز کمال اهمیت است.

اطلاعاتی که از نقشه‌های زمین‌شناسی بزرگ مقیاس حاصل می‌شود عمومی و کلی بوده و تمامی نیازهای طراحان سازه‌های زیرزمینی را در بر نمی‌گیرد. لذا برای تعیین دقیق مشخصات زمین‌شناسی، مطالعات کلی و دقیقتر خاک و سنگ از ضروریات اولیه طراحی است.

 

هدفهای اصلی اکتشافات زمین‌شناسی

1ـ تعیین شرایط اولیه تشکیل و وضعیت واقعی سنگها، شرایط فیزیکومکانیکی آنها در محدوده حفریات و فاصله بین حفریات تا سطح زمین

2ـ تعیین شرایط سطحی زمین از نقطه‌نظر آبهای سطحی، زهکشی‌های طبیعی، قناتها، چشمه و رودخانه‌ها

3ـ جمع‌آوری اطلاعات مربوط به گازدهی، حرارت و آب در زیرزمین

4ـ تعیین مشخصات زمین ساختی، تنشها و اثرات آنها روی دامنه فشارها در محدوده حفریات زیرزمینی

 

مـراحـل اکتشـافی زمین‌شناسی از دیدگاه حفر و احداث حفریات زیرزمینی

اقدامات اکتشافی از دیدگاه احداث حفریات زیرزمینی شامل سه مرحله زیر است:

الف ـ تحقیقات و اکتشافات مربوط به مشخصات عمومی طرح قبل از شروع طراحی

1ـ الف ـ بررسی کلی منطقه از دیدگاه تاریخی و آمارهای موجود، سنگ‌شناسی چینه‌شناسی و محیط زیست

2ـ الف ـ بررسی عکس‌های هوائی، وضعیت گیاهان منطقه، مشخصات بارز شیمیائی سنگها و کشف شرایط اولیه تشکیل آنها (آذرین یا رسوبی)، مطالعه گسل‌ها و چین‌خوردگی‌ها

3ـ الف ـ مطالعات آب‌شناسی، وضعیت رودخانه‌ها، سیل‌ها، تعیین PH آب، تعیین مشخصات حرارتی و شیمیائی و املاح موجود در آبهای سطحی برای تشخیص طبیعت سنگها و جنس زمین

4ـ الف ـ مطالعات ژئوشیمی برای تعیین مشخصات شیمیائی سنگها و خاکهای سطحی

5ـ الف ـ تعیین مشخصات ژئوفیزیکی با روشهای مقاومت الکتریکی، لرزه‌نگاری و غیره و مقایسه آنها با نمونه‌های حاصل از گمانه‌های اکتشافی

6ـ الف ـ مطالعات دقیق درزه‌ها، گسیختگی‌ها و تهیه نقشه‌های مربوطه

ب ـ تحقیقات دقیق ژئوتکنیکی (زیرزمینی) بموازات طراحی و قبل از شروع عملیات احداث

1ـ ب ـ جمع‌اوری اطلاعات مسلم از شرایط فیزیکی و شیمیائی سنگهای دربرگیرنده حفریات، هوازدگی، وزن مخصوص و مقاومت آنها

2ـ ب ـ جمع‌اوری اطلاعات در مورد استقرار و شیب لایه‌ها، چین‌خوردگی‌ها، گسل‌ها، سطوح لایه‌بندی و درزه‌ها

3 ـ ب ـ جمع‌اوری اطلاعات مربوط به: مقدار، کیفیت، خواص شیمیائی و عمق آبهای زیرزمینی

4 ـ ب ـ جمع‌اوری اطلاعات مربوط ب: مقدار، کیفیت و خواص شیمیائی گازها و افزایش درجه حرارت زمین نسبت به عمق

ج ـ تحقیقات تکمیلی در زمان عملیات احداث حفریات

تحقیقات تکمیلی زیر نه تنها برای کنترل اطلاعات داده شده توسط طراحان که برای اطمینان از درستی روش اجرائی انتخاب شده و در صورت لزوم اصلاح و تغییر روشها بایستی صورت گیرد.

نمونه این تحقیقات تکمیلی در زمان احداث حفریات زیرزمینی عبارتند از:

1ـ ج ـ حفر پیش تونلها و نمونه‌گیری از سنگهای جلوتر از سینه‌کار و مطالعه سایر شرایط زمین محل طرح

2 ـ ج ـ تجزیه شیمیائی آبها و گازها

3ـ ج ـ اندازه‌گیری تنش‌ها و تقارب مقاطع

 

نتیجه‌گیری

احداث سازه‌های زیرزمینی، در جهت دستیابی بهر هدف و یا در مسیر حل هر مشکلی که باشد، نسبت به احداث سازه‌ای مشابه در روی زمین بسیار پیچیده‌تر و مشکل‌تر و در نهایت بسیار گرانتر و پرهزینه‌تر خواهد بود

اجرای اینگونه طرحها، حتی با بکارگیری بهترین امکانات و توجه به کلیه مقررات ایمنی، نسبت به سازه‌های روی زمین، با خطرات جانی و مالی بیشتری روبرو می‌باشد با توجه به این حقایق است که تهیه طرح توسط مهندسین مشاور، که بر پایه مطالعات مقدماتی و تفصیلی زمین‌شناسی صورت پذیرفته باشد از الزامات و ضروریات هر پروژه زیرزمینی است.

بدین ترتیب مشاور انتخابی برای طراحی سازه‌های زیرزمینی باید دارای توانائیهای لازم جهت انجام دقیق اکتشافات و مطالعات موردنیاز بوده و قدرت تحلیل و طبقه‌بندی اطلاعات و کاربرد آنها را در طراحی صحیح پروژه داشته باشد و با کلیه دستورالعمل‌های بین‌المللی اجرائی و روشهای مدرن حفاری آشنا باشد.

بررسی نیروهای وارده بر فضاهای زیرزمینی1ـ تنش در پوسته زمین

وضعیت تنش در پوسته زمین، برای زمان و مکان معین، نتیجه تأثیر نیروهایی با خصوصیات و فشارهای گوناگون می‌باشد. معمولاً قبل از شروع هر کار مهندسی در ساختارهای زمینی سعی می‌شود وضعیت تنش را بدست آورد. وضعیت تنش زمین در حالت بکر پس از انجام عملیات حفاری و ایجاد ساختار دچار دگرگونی شده است و توزیع جدیدی از تنش در سنگ‌ها و محدوده آن به وجود می‌آید.

تنش‌های مؤثر بر هر نقطه از پوسته زمین را می‌توان ناشی از فشاهای زیر دانست.

1ـ تنش‌های ثقلی: این تنش‌ها بر اثر وزن طبقات فوقانی ایجاد می‌شود. به واسطه محصور بودن سنگ‌ها در دل زمین، تنشهای جانبی نیز در اثر فشار ثقلی گسترش می‌یابد. (اثر پواسون)

2ـ تنش‌های تکتونیکی: این تنش‌ها بواسطه تنش‌ها بواسطه تأثیر نیروهای تکتونیکی و زمین ساختی نظیر کوهزائی و یا گسل بوجود آید.

3ـ تنش‌های محلی: این تنش‌ها بواسطه ناهمگونی در جنس طبقات یا سنگ‌های همجوار بوجود می‌آیند. نظیر تمرکز تنش در عدسیهای ماسه سنگی یا اطراف کنکرسیونها.

4ـ تنش‌های باقیمانده: این تنش‌ها در حین تشکیل طبقات یا توده سنگها و در اثر فرآیندهایی نظیر کریستالیزاسیون، دگرگونی، رسوبگذاری، تحکیم و بی‌آب شدن در سنگها بسته به مورد گسترش می‌یابد. مثلاً تنش حاصل در مرز بین کریستالهای یک سنگ که دارای خواص فیزیکی متفاوت بوده و سرد شدن آنها متشابه یکدیگر نیست از این نوع می‌باشند.

از بین انواع تنش‌های فوق تنش‌های ثقلی را می‌توان از طریق محاسبه بدست آورد. ذیلاً به انواع تنش‌های ثقلی و نحوه برآورد آنها اشاره می‌کنیم.

 



خرید و دانلود پایان نامه درباره حفاری (تونل سازی)


دانلود کامل پایان نامه رشته عمران درباره شرکت فولادی در مقاطع مستطیل

دانلود کامل پایان نامه رشته عمران درباره شرکت فولادی در مقاطع مستطیل

در این پست می توانید متن کامل این پایان نامه را  با فرمت ورد word دانلود نمائید:

 

 

 

 

 مقاله توضیح الیا فرهای فولادی در مقاطع مستطیل

در این مقاله روش محاسباتی به منظور پیش بینی تعداد الیافرهای گذرنده از یک مقطع مستطیل نوضیح داده می شود و قسمت اعظم مقاله در مورد محاسبه تئوریکی فاکتور جهت گیری بحث می کند.

فاکتور جهت گیری در اینجا به عنوان طول میانگین برآمدگی (qrojectio) بر روی محور طول همه الیاف های گذرنده از یک سطح مقطع که توسط طول الیاف تقسیم می شود تعریف می گردد.

هنگامیکه فاکتورجهت گیری بدست آمد با یک محاسبه ساده می توان تعداد الیاف های گذرنده از یک   را بدست آورد. مقایسه بین تعداد الیاف های محاسبه شده و الیاف های عبوری از سطح مقطع، نشانگر پیش بینی خوب این روش می باشد.

1ـ مقدمه: یکی از توانایی های بسیار مهم الیاف فولادی، توانایی انتقال تنش از مقطع یک ترک می باشد. این توانایی اکثراً با پارامتر   شناخته می شود که مقیاس برای انرژی مصرف شده در طول یک آزمایش   می باشد. تحقیقات تجربی در دانشکده مهندسی عمران K.u.peven نشان داده است تناسب بزرگی بین   و تعداد الیاف های بکار رفته در مقطع کنجکاو می کند.

تعداد الیاف های موثر تنها وابسته به مقدار معینی الیاف نیست بلکه به فاکتور جهت گیری و نیز فاکتور بازدهی طول وابسته می باشد. در این مقاله تعداد کلی الیاف ها(اعم از مؤثر یا غیر مؤثر) محاسبه می گردد.

برای محاسبات بیشتر می توان فرض کرد تعداد الیاف های مؤثر متناسب با تعداد کمی الیاف ها می باشد.

محاسبه این ضریب تناسب که وابسته به کارایی الیاف می باشد در این مقاله مورد بحث قرار نخواهد گرفت.

2) دیدگاه کلی:

به منظور محاسبه تعداد کل الیاف ها به دانستن فاکتور جهت گیری ضروری است Krechel[S] نشان داد می توان تعداد کل الیاف ها را از رابطه زیر بدست آورد.

که در آن n : تعداد الیاف بر واحد سطح است. : ضریب جهت گیری است. : کسر جمعی الیاف و : سطح مقطع یک الیاف است.

محاسبه فاکتور جهت گیری مورد توجه بسیاری از محققان بوده است نخست فاکتور جهت گیری برای حالتیکه، الیاف می توانست آزادانه در همه جهات بچرخد محاسبه گردیداین حدود در ناحیه 1 شکل 1 آمده است.

دوم: شرط وزی در نظر گرفته شد موازی با جهتی که فاکتور جهت گیری تعیین می شد و (ناحیه 2 در شکل 1) و سرانجام شرطی وزی موازی با جهتی که فاکتور جهت گیری تعیین می شد ولی این بار عمود بر شرایط وزی اولیه تعیین می گردد. و این الیافی را در گوشه قالب ( ) شبیه سازی می کند h,b به ترتیب عرض و ارتفاع مقطع   می باشند lf طول الیاف می باشد در زیر هفت فرض برای محاسبه فاکتور جهت گیری در هر یک از این سه ناحیه در نظر گرفته شده است.

1ـ الیاف ها صاف می باشند برای الیاف های با سر قلاب دار تا زمانیکه بتوان تأیید قلاب را بر فاکتور جهت گیری ناچیز تلقی کرد می توان از فاکتور جهت گیری مشابه با حالت الیاف صاف استفاده کرد.

2ـ اگر بتون تازه برای مدت زمان طولانی تکان داده شود الیاف ها تمایل خواهند داشت تا در جهت افقی جهت گیری کنند این جهت گیری وابستگی شدیدی به مدت زمان ارتفاعش و چرخش (Dibroto) و فرکانس کارایی و ترکیب   دارد و تعیین آن بسیار مشکل است. با این وجود از تحقیقات دیگر

 این نتیجه حاصل شده است که ارتفاعش و تکان دادن تأکید مؤثری بر روی جهت گیری ندارد و اگر   ( ) تنها به مدت 1 تا 6 دقیقه تکان داده شود و اگر کارایی   خیلی زیاد نباشد تأکید ارتفاعش و تکان دادن بر روی جهت گیری الیاف ها در این مقاله بررسی نخواهد شد.

3ـ موقعیت الیاف در تیر (beam) بوسیله و گرانش آن شخص می گردد هر نقطه از سطح مقطع دارای شانس و احتمال یکسانی برای در نظر گرفته شدن به عنوان نقطه گرانش الیاف می باشد.

4 ـ جهت گیری الیاف در ناحیه (1) شکل (1) تحت هیچ شرایطی تحت تأثیر شرایط وزی قرار نمی گیرد.

5ـ جهت گیری الیاف در ناحیه ای تنها بوسیله یک سطح (جدار) از قالب ( ) تحت تأثیر قرار می گیرد.

6ـ جهت گیری الیاف در ناحیه (3) شکل (1) تحت تأثیر دو جدار از قالب قرار می گیرد.

7ـ فرض می شود سطح فوقانی مقطع دارای شرایط وزی یکسانی مانند جداره های قالب باشد.

بعد از ریختگی (قالب) این سطح صاف و صیقلی گردیده است تا هیچ الیافی بیرون نزند.

بر روی سطح فوق می تواند تعداد زیادی الیاف قرار گیرد، این تأیید در این مقاله بررسی نمی شود. هنگامیکه فاکتور جهت گیری برای نواحی 1 و 2و 3 (شکل 1) به ترتیب شناخته شد پس فاکتور جهت گیری کلی بدین صورت قابل محاسبه است.

: فاکتور جهت گیری در ناحیه (1) شکل (1) : فاکتور جهت گیری در ناحیه فاکتور جهت گیری در ناحیه (3) شکل (1) می باشند.

3) فاکتور جهت گیری در قسمت انباشتگی

یک الیاف در ناحیه 1 شکل (1) توسط هیچکدام از شرایط وزی محدود نشد و می تواند به سادگی حول نقطه گرانش خود بچرخد. اگر همه جهت گیری های ممکنه الیاف در نظر گرفته شود نقاط انتهای الیاف توصیفگر سطح یک کره می باشد. هر نقطه بر روی کده شانس این را دارد که انتهای الیاف باشد. این بدین معنی است که احتمال اینکه الیاف با محور طول تیر زاویه درجه بسازد متناسب با سطح Da می باشد شکل (2):
سطح سهم مقطع dA از فاکتور جهت گیری عبارتست از

انتدال گیری از نصف کره و تقسیم آن بر نصف سطح کره می دهد.

بر پایه اصول Stereologial به نتایج مشابهی رسیدند.

نشان داده شده در شکل (2) نشانگر وضعیتی است که یک طول جایگزین همان و   با نصف طول الیاف باشد. liet of [a] موارد بسیاری را بررسی کرده است که طول جایگزین متفاوت از نصف طول الیاف می باشد. در این مقاله تنها ارائه یک روش ساده جهت محاسبه ضریب جهت گیری میانگین الیاف ها در دقت بررسی است و اینکار بدون در نظر گرفتن طول های جایگزین ممکن برای الیاف ها صورت می گیرد.

4) فاکتور جهت گیری الیاف با یک شرط وزی:

این موردی است که در ناحیه 2 شکل (1) اتفاق می افتد فرض کنید نقطه گرانش الیاف در فاصله y از قالب ( ) باشد. y<lf/2، الیاف نمی تواند زیاد بچرخد، نقاط انتهای کره ای را توصیف می کنند که به شکل کلاه کروی بریده شده است شکل (3)

اگر دوباره زاویه بین الیاف با محور طول باشدو از صفر شروع به   کند هیچگونه مقاله ای حادث نخواهد شد به شرطی که:

تحت این شرایط سطح اولیه dA هنوز توسط معادله (2) قابل حصول است.

هنگامیکه زاویه شود dA تا خطوط پر رنگ در برش A-A کاهش می یابد شکل (3)

در عبارت مربوط به بایستی به عنوان پارامتر مد نظر گرفته شود.

انتگرال عددی رفته شده از عبارت 7 مقدار 6/0 را برای که منتقل از طول الیاف می باشد اگر چه طول الیاف یک از پارامتر هایی است که در عبارت 7 وجود دارد ولی هیچگونه تأثیری بر روی نتیجه عبارت ندارد. طول الیاف تنها موجب اختلافی در ضریب جهت گیری کل می شود که در فرمول (1) محاسبه گردید.

S) ضریب جهت گیری الیاف با دو شرط وزی:

این عددی است که در ناحیه 3 از شکل (1) نشان داده شده است. الیافی با و گرانش در فاصله y از یک جدار قالب و به فاصله7 از جذر دیگر قالب که عمود بر اول باشد در نظر بگیرید. شکل (4) دو مورد وجود دارد.



خرید و دانلود دانلود کامل پایان نامه رشته عمران درباره شرکت فولادی در مقاطع مستطیل


دانلود پایان نامه رشته عمران با موضوع پروژه تونل امام زاده هاشم

دانلود پایان نامه رشته عمران با موضوع پروژه تونل امام زاده هاشم

در این پست می توانید متن کامل این پایان نامه را  با فرمت ورد word دانلود نمائید:

 

 

 

 

 

 

 

 

 پروژه تونل امامزاده هاشم

 فصل اول

کلیات پروژه

مشخصات کلی پروژه :

پیمانکار این طرح ابتدا در زمستان 1379 شروع به تجهیز کارگاه نمود و در بهار 1380 عملیات حفاری را در دو جبهه ورودی و خروجی با مبلغ ریالی 120میلیارد ریال آغاز کرد.

قطعه یک واریانت گردنه امامزاده هاشم به طول 4/5 کیلومتر شامل یک قطعه تونل 3189 متری با سطح مقطع تقریبی 85 متر مربع، شیب 5/2 درصد و عرض مقطع 9/11 متر که پس از لاینینگ به 5/8 متر خواهد رسید، به همراه گالریها ی ورودی و خروجی آن، پنج دهانه پل و عملیات راهسازی به طول 22/2 کیلومتر می باشد.

گردنه امامزاده هاشم که در حدود 25 کیلومتر طول داشته و بخش مهم و صعب العبور جاده هراز را تشکیل می دهد، دارای شیبهای صعودی و نزولی (حتی تا 9 درصد) و شعاع قوسهای کوچک و بزرگ تا 35 متر می باشد، لذا این قسمت از محور هراز جدا از مسائل ایمنی و مشکلات سرما، یخبندان و نزول بهمن از مشخصات هندسی بسیار پائینی برخوردار بوده و حدود 40 درصد مشکلات کلی جاده آمل- رودهن و بیش از 70 درصد مشکلات زمستانی محور فوق مربوط به این بخش از جاده هراز می باشد.

با ارائه مطالب فوق اهمیت احداث تونل قطعه یک و پس از آن قطعه دوم در ایمن سازی مسیر و جلوگیری از تلفات انسانی مشخص می شود، لذا تسریع در اجرای پروژه و در پی آن بهره برداری از پروژه اهمیت بسزایی در این امر خواهد داشت.

موقعیت جغرافیایی مسیر پروژه :

از لحاظ موقعیت جغرافیایی این تونل در حدواسط بین استان تهران و مازندران در کیلومتر 95 جاده تهران- آمل نرسیده به آبشار پلور واقع شده است.

این واریانت از کیلومتر 100+107 جاده هراز از سمت آمل و در حدود 5/4 کیلومتری جنوب پلور آغاز و در کیلومتر 448+1 وارد تونل شده و پس از خروج از تونل، مسیر تا کیلومتر 400+5 در دره مشاء امتداد می یابد. از نظر تقسیمات کشوری شروع واریانت در محدوده استان مازندران (پلور) و انتهای واریانت در محدوده استان تهران (مشاء- دماوند) واقع می باشد.

هدف از اجرای پروژه :

در فصل زمستان به دلیل ریزشی بودن ترانشه های منطقه آبعلی و نیز بهمن گیر بودن گردنه امامزاده هاشم و شیبهای طولانی جاده موجود مشکلات ترافیکی شدیدی بوجود می آید، لذا برای جلوگیری از ترافیک و کاهش خسارات مالی و جانی و نیز کاهش مسافت راه از 25 کیلومتر به 9 کیلومتر، تصمیم به احداث تونل در این منطقه گرفته شد.

وضعیت رشد ترافیکی محور هراز در مقاطع مختلفی از سال و متعاقب با آن روند افزایش هزینه سوخت تلف شده، در ادامه بحث آورده شده است که تجزیه و تحلیل آن، لزوم اجرای این پروژه را بیشتر نمایان می سازد.

وضعیت ترافیک(عبور ومرور) محورهراز :

باتوجه به مدل انتخابی برای تعیین روند و جریان ترافیکی محور هراز، وضعیت ترافیک در سالهای ذکر شده در جدول زیر آورده شده است.

لازم به ذکر است برآورد ارائه شده در این گزارش بر اساس گزارش مشاور و بررسی های صورت گرفته بر روی ترافیک عبوری از این جاده می باشد که نشان دهنده میزان   صرفه جوئی در هزینه تأمین سوخت توسط دستگاه های اجرائی کشور می باشد.

فصل دوم

زمین شناسی منطقه

نگاهی کلی

این تونل با طولی نزدیک به 3200 متروبه قطر11متروباراستای شمال شرق- جنوب غرب در بخش غربی بارگاه امامزاده هاشم در دست احداث است.

از لحاظ زمین شناسی این تونل در زون البرز مرکزی واقع شده و بدلیل آنکه این زون بیشترین مراحل تکتونیزه را در البرز تحمل نموده است، لذا سنگهای دربرگیرنده تونل تحت تأثیر عملکرد تکتونیک منطقه قرار گرفته بطوریکه در قسمت جنوبی این تونل گسل معروف مشا- فشم که خود جزء گسلهای اصلی و معروف درایران می باشد، واقع شده است.

در قسمت شمالی تونل، گسلهای اصلی مانند گسل پلور و نیاک در فاصله چند کیلومتری آن قرار گرفته اند. با توجه به عملکرد این گسلها و نیروهای اصلی بوجود آورنده آنها، گسلهای موضعی نیز در منطقه زیاد بوده که بعضی از آنها در طول تونل سبب خرد شدگی و در نتیجه پائین آمدن مقاومت و کیفیت سنگ در مسیر حفاری تونل می شود.

– سازندهای منطقه :

به لحاظ سازندهای تشکیل دهنده منطقه حفاری تونل، 5 سازند اصلی مشاهده می گردد که به ترتیب از سمت دهانه ورودی به خروجی عبارتند از:

سازند شمشک (ژوراسیک)سازند الیکا (تریاس)سازند مبارک (کربونیفر)سازند جیرود (دونین)سازند لالون (کامبرین فوقانی)سازند شمشک :

دارای لیتولوژی متفاوتی بوده که شامل شیلهای سیلتی و رس دار، لایه های شیلی ذغالدار و ماسه سنگهای کوارتزی، ماسه سنگهای خاکستری و هوازده است. ماسه سنگها دارای 4 سیستم درزه می باشند که حالتی کاملاً بلوکه را به سنگ داده و به لحاظ مقاومت فشاری بسته به دارا بودن درصد سیلیس و یا هوازدگی آنها، مقاومتی در حدود 120 مگاپاسکال تا 150 مگاپاسکال را دارا می باشند.

طولی معادل 1400 متر رز این تونل در این تشکیلات واقع می گردد. مقاومت فشاری در شیلها بسته به نوع آنها در حالت طبیعی حدود 27 تا 55 مگاپاسکال ودر حالت اشباع حدود 60 تا 75 مگاپاسکال می باشند. درشیلها 3 سیستم درزه مشاهده شده که دارای خصوصیات زیر می باشند:

پرشدگی (Filling) آنها بیشتر از رس (Clay) می باشند.

ب) باز شدگی دهانه آنها حداگثر به یک سانتیمتر رسیده و سطح درزه ها بیشتر دارای حالت مواج است که این مورد در ماسه سنگها بصورت زبر و پله کانی دیده می شوند.

یادآور می گردد که زونهای گسله (موضعی) کیفیت سنگ را بسیار پائین آورده ودر تمامی موارد با اضافه شدن دبی آب همراه می باشند.

 



خرید و دانلود دانلود پایان نامه رشته عمران با موضوع پروژه تونل امام زاده هاشم