دانلود پایان نامه تکنولوژی ساخت چدن دوگونه (چدن G&D)

دانلود پایان نامه تکنولوژی ساخت چدن دوگونه (چدن G&D)

تکنولوژی ساخت چدن دوگونه (چدن G.D)

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه:137

فهرست مطالب :

فصل اول: شناخت فلز آهن

1-1) طبیعت و خواص آهن

1-2) سنگهای معدنی آهن خالص

1-3) خواص بلوری آهن خالص

1-4) فرآیند استخراج آهن (متالورژی استخراجی آهن)

1-5) انواع آهن

1-5-1) آهن خام (لخته)

1-5-1-1) خواص آهن خام (لخته)

1-5-2) آهن کار شده

1-5-2-1) خواص و کاربرد آهن کار شده

فصل دوم: چدن شناسی عمومی

2-1) طبیعت چدن ها

2-2) خصوصیت چدن ها

2-2-1) برتری ها

2-2-2) کاستی ها

2-3) انواع چدن ها

2-3-1) چدن برای مقاصد عمومی (معمولی)

2-3-1-1) چدن مالیبل (چدن چکش خوار)

2-3-1-2) چدن سفید

2-3-2) چدن برای مقاصد ویژه (آلیاژی)

2-4) متالورژی چدنها

2-4-1) سیستم آهن – کربن – سیلیسیم

2-4-1-1) کربن معادل

2-4-2) حضور کربن در چدن

2-4-2-1) کربن آزاد (گرافیت)

2-4-2-2) کربن ترکیبی (کاربید)

2-4-3) ساختار زمینه ها در چدن

2-4-3-1) فریت

2-4-3-2) پرلیت

2-4-3-3) سمنیت

2-4-3-4) آستیت (اوتسیت)

2-4-3-5) بینیت و مارتنزیت

2-4-3-6) کاربیدها

2-5 ) تأثیر عناصر در چدن

2-5-1) عناصر عمده

2-5-1-1) گوگرد (S)

2-5-1-2) منگنز (Mn)

2-5-1-3) فسفر (P)

2-5-2) عناصر جزئی

2-5-3) عناصر آلیاژی

2-5-3-1) نیکل (Ni)

2-5-3-2) کرم (Cr)

2-5-3-3) مولیبدن (Mo)

2-5-4-3) وانادیم (Va)

2-5-3-5) سیلییم (Si)

2-5-3-6) مس (Cu)

2-5-3-7) آلومینیوم (Al)

2-5-4) عناصر گازی

2-5-4-1) اکسیژن (O)

2-5-4-2) نیتروژن (ازت N)

2-5-4-3) هیدروژن (H)

2-6) موارد استعمال چدن ها

2-6-1) چدن خاکستری (ریختگی)

2-6-2) چدن مالیبل (چکش خوار)

2-6-3) چدن داکتیل (نشکن)

فصل سوم: چدن شناسی تخصصی

3-1) چدن خاکستری

3-1-1) متالورژی چدنهای خاکستری

3-1-2) ساختار میکروسکوپی در چدنهای خاکستری

3-1-2-1) گرافیت (G)

3-1-3) ریخته گری چدن خاکستری

3-1-3-1) مواد شارژ

3-1-3-2) مسئله‌ی تلقیح مواد در ریخته گری چدن خاکستری

3-1-3-2-1) عملکرد تلقیح

3-1-3-2-2) مواد تلقیح

3-1-3-2-3) روش های تلقیح

3-1-3-2-4) اثر مواد تلقیح

3-1-3-2-5) ارزیابی عملکرد تلقیح

3-1-3-3) متالورژی ذوب چدن خاکستری

3-1-3-3-1) گرافیت زایی

3-1-4) انجماد چدن خاکستری

3-1-4-1) گرایش انجماد به تشکیل چدن سفید

3-1-4-2) گرایش انجماد به تشکیل چدن خاکستری

3-1-4-3) اصول فرآیند انجماد

3-1-4-4) ساختار چدن خاکستری در دمای محیط

3-1-4-5) اثر ضخامت

3-2) چدن داکتیل (نشکن)

3-2-1) مبانی ساخت چدن داکتیل

3-2-2) کاربرد چدن داکتیل

3-2-3) متالورژی چدن داکتیل (نشکن)

3-2-3-1) انجماد و مکانیزم کروی شدن گرافیت در چدن نشکن

3-2-3-2) تعادل آهن و گرافیت

3-2-3-2-1) کربن معادل

3-2-3-2-2) انجماد هیپویوتکتیکی

3-2-3-2-3) انجماد هیپر (هایپر) یوتکتیکی

3-2-3-2-4) مکانیزم کروی شدن گرافیت

3-2-4) ریخته گری چدن داکتیل (نشکن)

3-2-4-1) مواد شارژ

3-2-4-2) ملاحظات کیفی، شیمیایی و متالورژیکی در حین ذوب

3-2-4-2-1) کربن دهی

3-2-4-2-2) کنترل گاز مذاب

3-2-4-2-3) گوگرد زدایی

3-2-4-2-4) انتخاب ترکیب شیمیایی

3-2-4-2-5) اثر کربن معادل

3-2-4-3) اثر درجه حرارت بارریزی

3-2-4-4) فرآیند کروی سازی

3-2-4-4-1) مشکلات افزدون منیزیم به شکل خالص

3-2-4-4-2) روشهای مختلف کروی سازی

3-3) چدن با گرافیت فشرده (CGI)

3-3-1-1) ریزساختار

3-3-1-2) ترکیب شیمیایی

3-3-1-3) خواص مکانیکی و فیزیکی

3-3-1-3-1) خواص کششی

3-3-1-3-2) هدایت حرارتی

3-3-1-3-3) جذب ارتعاش

3-3-1-3-4) قابلیت رشد و پوسته شدن

3-3-2) ریخته گری چدن با گرافیت فشرده

3-3-2-1) عملیات ذوب و تهیه مذاب چدن با گرافیت فشرده

3-3-2-2) مواد قالبگیری

3-3-3) کاربردهای صنعتی چدن با گرافیت فشرده (CGI)

3-3-4) مقایسه چدن با گرافیت فشرده در مقابل چدن های خاکستری و نشکن

3-3-4-1) در مقایسه با چدن خاکستری (مزایا CGI)

3-3-4-2) در مقایسه با چدن نشکن (مزایا CGI)

فصل چهارم: تئوری چدن دوگونه (G&D)

4-1) مقدمه ای بر چدن دو گونه (G&D)

4-2) مقدمه ای بر مسئله‌ی تکنولوژی

4-3) تشریح تکنولوژی ساخت

چکیده :

فصل اول: شناخت فلز آهن

1-1) طبیعت و خواص آهن:

آهن دارای نقطه‌ی ذوب و نقطه‌ی جوش می باشد. وزن مخصوص این فلز 86/7 و شعاع اتمهای آهن به صورت (گاما) و به صورت آلفا است.

آهن خالص را نمی توان به طریق صنعتی تهیه کرده آهن با درصد خلوص 9917/99 در آزمایشگاه ها قابل تهیه است. آهن ساخته شده در آزمایشگاه ها 0083/0 درصد ناخالصی دارد و در حدود 27 عنصر را در بر می گیرد که اهم ترکیبات آن عبارتند از کربن، سیلیسیم، گوگرد، فسفر (عناصر دائمی همراه آهن) و سایر ناخالصی ها از قبیل هیدروژن، ازت، کلسیم، منیزیم و غیره. هر نوع ناخالصی روی خواص آهن تأثیر می گذارد، مثلاً اگر مقدار درصد کربن آهن از 02/0 درصد به 1/0 درصد افزایش پیدا کند، هدایت حرارتی آهن را از 177/0 به 134/0 کاهش می دهد. تأثیر ناخالصی های غیرفلزی (فسفر، گوگرد، اکسیژن، ازت و هیدروژن) حتی به مقادیر بسیار ناچیز روی خواص آهن، به مراتب زیادتر از ناخالصیهای فلزی است. از قبیل مس، نیکل، منگنز و غیره است.

آهن خالص قابلیت استفاده صنعتی را ندارد. قابلیت انعطاف آهن خالص زیاد و سختی آن بسیار کم است. این آهن قابلیت سخت شدن را ندارد. بدین علت مطالعه اشکال وجود ناخالصی ها یا به عبارتی دیگر چگونگی انحلال کربن و اکسیژن و سایر ناخالصیها در آهن مذاب از اهمیت زیادی برخوردار است.

1-2) سنگهای معدنی آهن خالص:

تمامی یا بهتر بگویم اکثر فلزات در طبیعت به صورت سنگهای معدنی یافت می شوند، لذا آهن نیز از این قاعده مستثنی نیست. از آن جایی که این فلز یکی از مهمترین مواد اولیه صنایع مهندسی می باشد لذا صنایع بسیاری در مراکزی نزدیک به منابع سنگ آهن، به شرط آن که انرژی‌های سوختی نیز در دسترس باشند تأسیس می گردند.

معمولاً در صنایع استخراجی، سنگهای معدن اکسیدی آهن دارای عیار بیشتری نسبت به سنگهای کربناتی آهن هستند. پس یک سنگ آهن خوب معمولاً محتوی بیش از 20% آهن بوده و در بعضی از انواع سنگ معادن آهن خالص، نظیر هماتیت این مقدار می تواند تا 70% افزایش یابد. در جدول (1-1)، به انواع ترکیبات سنگهای معدنی آهن اشاره شده است.

1-3) خواص بلوری آهن خالص:

آهن یک فلز آلوتروپیک است، بدین معنی که بیشتر از یک نوع شبکه‌ی بلوری دارد، در واقع ساختمان شبکه‌ی بلوری دارد، در واقع ساختمان شبکه‌ی بلوری آن در دماهای مختلف تغییر می یابد. منحنی تبرید آهن خالص در شکل (1-1) نشان داده می شود.

شکل (1-1): منحنی تبرید برای آهن خالص

آهن در دمای انجماد یافته و شبکه‌ی بلوری آن b.c.c می‌شود. این آهن را آهن (دلتا) می نامند. در تغییر آلوتردپی در آهن ظاهر شده، اتمها موقعیت خود را تغییر می دهند و شبکه‌ی بلوری در آهن ظاهر شده، اتمها موقعیت خود را تغییر می دهند و شبکه‌ی بلوری آهن از b.c.c به f.c.c تبدیل می گردد. این آهن را آهن (گاما) می‌نامند که غیرمغناطیسی است. وقتی درجه‌ی حرارت به رسید تغییر فاز دیگری در آهن رخ می دهد و دوباره تغییر آلوتروپی در آهن ظاهر شده و شبکه‌ی بلوری آن مجدداً از f.c.c. به b.c.c تبدیل می شود. این آهن را آهن  (آلفا) می نامند که هنوز خاصیت مغناطیسی ندارد. سرانجام در آهن بدون اینکه شبکه‌ی بلوری خود را تغییر دهد خاصیت مغناطیسی پیدا می کند. قبلاً آهن غیرمغناطیسی را آهن (بتا) می نامیدند ولی بعدها با مطالعات و بررسی های اشعه‌ی X معلوم شد که در ساختمان شبکه‌ی بلوری آهن تغییر نمی کند. سپس کلیه‌ی تغییرات آلوتروپی در موقع خنک کردن آهن حرارت پس می دهند (اگزوترمیک یا گرمازا) و در هنگام گرم کردن آن حرارت جذب می کنند (اندوترمیک یا گرماگیر).

شکل (1-2): شبکه‌ی بلوری و آرایش اتمهای مکعب مرکزدار (b.c.c)

شکل (1-3): شبکه‌ی بلوری و آرایش اتمهای مکعب با سطوح مرکزدار (f.c.c)

1-4) فرآیند استخراج آهن (متالورژی استخراجی آهن):

سنگ آهن به همراه یک کک مناسب سخت از طریق قسمت بالای کوره ای استوانه‌ای بلند، به داخل کوره ریخته می شود (شکل 1-4).

شکل (1-4): نمای کلی یک کوره بلند ذوب آهن شامل: 1. قیف ناودانی 2. واگن وزن کننده شارژ 3. واگنت انتقال مواد به کوره 4. قیف شارژ 5. تویرهای هوا 6. کف کوره 7. سوراخ خروج سوباره

در این کوره هوا با فشار لازم از طریق تویرهای هوا به طرف بالا جریان یافته و اکسیژن لازم را برای احتراق کک فراهم می آورد. حرارت و کربن حاصل از کک باعث احیاء سنگ آهن و تبدیل آن به چدن مذاب می گردد. مذاب چدن به تدریج از قسمتهای فوقانی کوره ذوب شده و با گذشتن از لابلای تکه های کک در ته کوره جمع می گردد. این نکته را بایستی به خاطر داشت که هر گونه سنگ معدن مصرفی، محتوی مقادیری مواد معدنی ناخواسته به نام «گانگ» بوده ولذا برای جدا کردن این مواد زائد (به همراه خاکستر حاصل از سوختن کک) از مذاب، مقداری آهک نیز به داخل کوره ریخته می شود.

آهک این مواد زائد را به صورت سرباره رقیقی درآورده و از طریق سوراخی که در زیر تویرهای هوا و بالای سوراخ خروج مذاب قرار دارد این سرباره از کوره خارج می گردد. از آنجایی که روش گداز و تصفیه سنگ معدن آهن به طریق فوق فرآیند ساده ای می باشد لذا دارای قدمتی هزاران ساله است. اولین کوره های به کار گرفته شده توسط انسان، بسیار ابتدایی بوده و از سنگ ساخته می شده است. این کوره ها دارای ظرفیت ذوب محدودی بوده است. با گسترش صنایع، کوره های به مراتب بزرگتری جایگزین کوره های سنگی گردیدند.

در اولین طرحهای صنعتی کوره های بلند، به جای بدنه سنگی از ورقه های چدنی که درون آن توسط آجرهای نسوز پوشیده شده بود استفاده شد. امروز این نوع جداره ها جای خود را به استوانه های فولادی داده که درون آنها توسط دیرگدازه های مناسبی پوشش گردیده است. در مراحل اولیه تکامل این نوع کوره ها از هوا با درجه حرارت نرمال (درجه حرارت محیط) استفاده شد و به همین دلیل این نوع کوره ها به کوره های بلند با هوای سرد معروف گردیدند.

یکی از تکاملهای اساسی در زمینه کوره های بلند جایگزین نمودن هوای پیش گرم شده بجای هوای سرد است. پیش گرم کردن هوای ورودی به کوره در برجهای گرم کن انجام می شود. در این نوع برجها، آجرهای نسوز را به صورت لانه زنبوری می چینند. گازهای گرم خروجی از کوره بلند که احتراق آنها به طور ناقص انجام یافته، وارد و برج گرم کن شده و به همراه هوای اضافی که وارد این برجها می گردد، این گازها سوخته و باعث حرارت دیدن آجرهای برجها می شود. در هنگامی که گازهای خروجی از کوره بلند صرف حرارت دادن این برجها می گردد دو برج دیگر که قبلاً به طریقه مشابه گرم شده اند، هوای مورد نیاز کوره بلند را از خود عبور داده و آن را تا حدود 650 درجه سانتیگراد پیش گرم می سازند. در فواصل کوتاه زمانی جهت جریان فوق تغییر کرده یعنی هنگامی که دو برج اول هوا ورودی به کوره را پیش گرم می کنند، گازهای خروجی از کوره بلند صرف حرارت دادن به دو برج دیگر می‌شود. در شکل (1-5)، نمای شماتیکی و ابعاد نسبی یک کوره بلند به همراه چهار برج گرم کن هوا نشان داده شده است.

تغییرات شیمیایی که در کوره بلند اتفاق می افتد نسبتاً ساده است. سوختن کک باعث تشکیل شده و قسمت اعظم در جریان تماس با کک گداخته به CO تبدیل می گردد. منواکسید کربن داغ، اکسید آهن را احیاء کرده و نتیجه واکنش انجام شده، آهن مذاب و گاز خواهد بود.

شکل (1-5): اندازه های نسبی یک کوره بلند و برجهای گرم کن هوای ورودی به کوره

آهک موجود در کوره نیز در اثر حرارت دیدن به و CaO تجزیه شده و CaO در ترکیب با ناخالصیها (اکثراً ) در سنگ معدن یک سرباره روان با نقطه‌ی ذوب پایینی را به وجود می آورد، لذا خروج ناخالصی از کوره و جداسازی آن را از مذاب مقدور می سازد. در زیر اهم فعل و انفعالات انجام یافته در یک کوره بلند نشان داده شده است.

فعل و انفعالات مربوط به سوختن کک: احیای : احیای سنگ آهن: پیدایش سرباره:

در شکل (1-6)، روابط بین اجزاء متشکله شارژ کوره و محصولات واکنش های انجام یافته بین آنان نظیر چدن مذاب سرباره، و گازهای خروجی از کوره نشان داده شده است. در حالی که در شکل (1-7) نشان دهنده‌ی وزن واقعی عناصر مصرفی در کوره بلند می باشد. این نکته مهم را بایستی بخاطر داشت که اعداد نشان داده شده در شکل (7-1) بر مبنای مصرف سنگ معدن آهن خاص در یکی از کشورهای صنعتی جهان است. بدیهی است با تغییر نوع سنگ معدن و درصد ناخالیصهای محتوی آن مقادیر داده شده تغییر خواهند کرد.

شکل (1-6): رابطه‌ی بین مداد شارژ شده در کوره و محصولات به دست آمده از کوره

شکل (1-7): مقادیر نسبی مدار مصرف شده در کوره بلند برای تولید یک تن شمش چدن

1-5) انواع آهن:

1-5-1) آهن خام (لخته):

آهن خامی که از کوره بلند بدست می آید اولین تبدیل سنگ بصورت فلز قابل مصرف است. عمل کوره بلند یک فرآیند پیوسته است، سنگ معدن، سنگ آهک و ذغال کک به تناوب در کوره ریخته می شود، گاز و کربن موجود در ذغال کک اکسید آهن را طی واکنشهای قسمت قبل احیاء می نماید.

فرآیند واقعی احیاء بصورت ساده ای که در رابطه‌ی قسمت قبل نشان داده شد صورت نمی گیرد؛ بلکه در چندین مرحله انجام می گیرد ولی در هر صورت نتیجه نهایی مطابق روابط قبل است و نیز دو واکنش احیای سنگ آهن برگشت پذیر می باشند. اما می توان با تنظیم مقدار شارژ کوره درجه حرارت و مقدار هوای این واکنش ها را طوری کنترل کرد که در جهت مطلوب صورت گیرند به تدریج که شارژ کوره به نزدیکی شکم کوره می رسد و درجه حرارت بالا می‌رود و سنگ آهن احیاءشده و به شکل اسفنج گداخته درمی آید، در این مرحله آهن، کربن زیادتری جذب می نماید. که موجب پایین آمدن نقطه‌ی ذوب می شود. در این مرحله آهن، کربن زیادتری جذب می نماید. که موجب پایین آمدن نقطه‌ی ذوب می شود؛ تا اینکه بالاخره آهن ذوب شده، و بر روی قطعات سوخته‌ی ذغال گداخته جاری گردیده و در بوته جمع می شود. این آهن خام مذاب را هر پنج یا شش ساعت یک بار از کوره خارج می نمایند. آهن خام را در قالبهای کوچک می ریزند، قطعات کوچک آهن که به شکل این قالبها در می آیند لخته نام دارند. محصول کوره بلند معمولاً به این اسم نامیده می شود.

1-5-1-1) خواص آهن خام (لخته):

به همراه سنگ آهن، اکسیدهای دیگری از سنگ معدن و زغال کک به وجود می‌آید، و به سادگی احیاء شدنی هستند که در کوره بلند احیاء می شوند. بنابراین تمام فسفر و قسمت عمده منگنز موجود در سنگ معدن در آهن خام باقی می مانند ولی اکسیدهای گوگرد و سیلیسم کاملاً احیاء نمی شوند. اکسیدهای کلسیم، منیزیم و آلومینیوم، به کمک کربنات کلسیم موجود در سنگ آهک به صورت سرباره در آمده و از کوره خارج می شود. در نتیجه آهن خام شامل حدود 4% کربن، تمام فسفر موجود در سنگ معدن و قسمت عمده منگنز آن است. مقدار سیلیسم و گوگرد موجود را می توان تا حدودی از روی مواد خام و همچنین نحوه کنترل ترکیب شیمیایی سرباره و درجه حرارت کوره معلوم نمود، تمام عناصر احیاء شده در فلز مذاب باقی می مانند. در حالی که تمام عناصر اکسید شده در سرباره جمع می شوند. بنابراین ترکیب تقریبی آهن خام از این قرار است.

و...

NikoFile



خرید و دانلود دانلود پایان نامه تکنولوژی ساخت چدن دوگونه (چدن G&D)


دانلود مقاله سیر تحول پلاستیک ها و روش های نوین در تولید و بازیافت

دانلود مقاله سیر تحول پلاستیک ها و روش های نوین در تولید و بازیافت

سیر تحول پلاستیک ها و روش های نوین در تولید و بازیافت

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه:48

فهرست مطالب :

مقدمه ای بر پلاستیک ها ­_______________________________ 3

تاریخچه پلاستیک ها ___________________________________ 3

سیر تکاملی پلاستیک ها ________________________________ 4

پلیمرها ______________________________________________ 6

دسته بندی پلیمر ها ______________________________________ 7

لاستیک _________________________________________________ 7

آزمون‌های پلاستیک ‌ها _____________________________________ 7

ماشینکاری و عملیات پرداخت نهایی روی قطعات پلاستیکی کامپوز ___11

فرآیند های قالبگیری _____________________________________ 12

قالب گیری مواد ترموست دانه ای و صفحه ای __________________ 15

 انواع محصولات پلاستیکی اکسترود شده _______________________ 17

اصول پایه در طراحی محصولات پلاستیکی _______________________ 18

فهرست بعضی از اصطلاحات فنی ___________________________21

سازمان‌های مربوط به صنعت پلاستیک _______________________ 23

جدول تاریخچه زمانی پلاستیکها ____________________________24

چکیده :

واژه پلاستیک دارای ریشه یونانی و مشتق از واژه یونانی Plastikos به معنی "شکل دادن یا جای دادن درون قالب برای قالبگیری" می باشد. انجمن صنعت پلاستیک SPI یک توضیح بسیار دقیق تر و مشخص تری را در این خصوص ارائه می کند. این انجمن پلاستیک ها را به شرح زیر مشخص و تعریف می کند: "هر یک از گروههای بزرگ و متفاوتی از مواد به طور کامل یا در بخشی از ساختار شیمیایی خود شامل ترکیباتی از کربن با اکسیژن، نیتروژن و هیدروژن و یا سایر عناصر آلی و معدنی می باشند به طوری که در حالت نهایی خود، حالت جامد به خود می گیرند و در چند مرحله از فرایند ساخت و تولید خود نیز، شکل مایع به خود می گیرند و درنتیجه قادر به تشکیل اجسامی سه بعدی در شکل های گوناگون می باشند که فرایند شکل دادن آ نها، نتیجه استفاده از گروه های مواد به طور منفرد یا متصل شده به هم در کنار یکدیگر تحت تأ ثیر حرارت و فشار
 می باشد."
‏یک شیمیدان انگلیسی به نام جوزف پریستلی (Joseph Priestley)، اولین باو واژه لاستیک Rubber ‏را متداول کرد، پس از اینکه او متوجه شد که تکه ای از لاتکس طبیعی بخوبی نوشته های مدادی را پاک می کند. لاستیک طبیعی را در گروه بزرگی از پلیمرها موسوم به "الاستومرها یا کشپارها Elastomers " می توان جای داد. الاستمرها،مواد پلیمری طبیعی یا سنتتیک می باشند که تا حد %200 طول اولیه خود و در دمای اتاق می توانند کشیده شوند و تقریبا به طور سریعی به طول اولیه خود برگردند.

تاریخچه پلاستیک ها

امروزه تصور زندگی کردن بدون وجود پلاستیک ها بسیار ‏سخت و دشوار می باشد.درفعالیت های روزمره به کالاهای پلاستیکی همانند بطریها، شیشه های عینک، تلفن ها، نایلون ها و بسیاری از اشیا پلاستیکی دیگر وابسته ایم. درهر صورت، بیش از یکصد سال از تاریخچه پلاستیک ها به شکل کنونی در زندگی ما نمی گذرد و صد سال پیش آ نها به صورت امروزی وجود نداشتند. تا مدتها قبل از توسعه پلاستیک های تجاری، برخی از مواد موجود، خواص منحصر به فردی را از خود به نمایش گذارده اند. اگر چه پلاستیک ها قوی، نیمه شفاف، دارای وزن سبک می باشند وقابلیت قالبگیری دار‏ند، فقط تعداد بسیار اندکی از مواد وجود دارند که چنین خواصی را به صورت درهم آمیخته با هم و با کیفیت مطلوب ازخود نشان می دهند. امروزه از این مواد، به عنوان پلاستیک های طبیعی نامبرده می شود.
‏پلاستیک های طبیعی در طی قرون متمادی از ترکیب و تلفیق خواص زیر بهره مند شده اند: وزن سبک، استحکام مکانیکی، مقاومت در برابر نفوذ آب، مات بودن و نیم شفافیت و قابلیت قالبگیری. توانایی بالقوه آ نها آ شکار بود ولیکن آ نها موادی بودند که جمع آوری شان دشوار بود یا فقط در حجم ها و یا ابعاد محدود در دسترس بودند. در سرتاسر دنیا، افراد بسیاری تلاش کردند تا پلاستیک های طبیعی را بهبود بخشیده، بهینه سازند و یا اینکه جایگزینها یی را برای آ نها پیدا کنند. ‏
در فرایند ساخت و تولید پلاستیک های طبیعی اصلاح شده، مواد خام طبیعی همانند بذرهای پنبه یا کتان یا لاستیک صمغی به شکل های جدید و بهتری مبدل شدند. سلولوئید مزایا و کیفیت افزون تری نسبت به شاخ داشت که برتری آ ن را در عمل نشان می داد. ولیکن مواد اصلاح شده هنوز دو نخستین جزء تشکیل دهنده شان بر پایه منابع طبیعی استوار بودند.تا قبل از توسعه باکلیت امکان ساخت ماده ای که بتواند در کارخانه تهیه و ساخت شود و در عین حال با طبیعت رقابت کند، وجود نداشت. باکلیت، دریچه های توسعه گروهی از پلیمرهای سنتتیک را باز کرد که برای فراهم کردن شرایط خاص، تنظیم و طراحی شدند.
‏کاوش و تحقیق برای مواد بهبود یافته تا به امروز ادامه دارد. بسیاری از الیاف جدید نتیجه تلاش برای ساخت ابریشم مصنوعی(Artificial silk) می باشد. مواد مرکب (Compositematerials) هم اکنون در کلیه کاربردها یی که قبلا مخصوص فلزات بود، مورد استفاده قرار می گیرد. امکانات برای یافتن جانشین های جدید به نظر بی انتها و پایان ناپذیر می ایند.

سیر تکاملی پلاستیک ها

پلاستیک های طبیعیمواد طبیعی اصلاح شدهپلاستیک های سنتتیک یا مصنوعی قدیمیپلاستیک های سنتتیک تجاری

 پلاستیک های طبیعی
       • شاخ
       • لاک شیشه ای
       • گوتاپرشا(نوعی از کائوچوی طبیعی با ساختار ترانس)

‏مواد طبیعی اصلاح شده قدیمی
       • لاستیک
       • ‏سلولوئید

پلاستیک های مصنوعی یا ساخته شده قدیمی


پلاستیک های مصنوعی تجارتی

پلاستیک های طبیعی

نقطه شروع این پلاستیک ها در انگلستان قرون وسطی بود.
      • شاخ

      • لاک شیشه ای یا شلاک (shellac) :
در حوا لی سال های 1290 میلادی وقتی که مارکوپولو از سفر خود به آ سیا، به اروپا بازگشت، لاک شیشه ای را با خود به همراه آورد. او لاک شیشه ای را در هندوستان پیدا کرد، جایی که مردم، قرن ها بود که از آن استفاده می کردند. آنها خواص بی نظیر یک پلیمر طبیعی را که از حشرات به جای شاخ گاو به دست می آمد، کشف کرده بودند.
حشره ای که پلیمر را تولید می کرد، بچه حشره ساس مانندی بود که Lac ‏نامیده می شد که در نواحی هندوستان و آسیای جنوب شرقی زندگی می کند.

      • گوتا وپرشا Gutta percha یا لاستیک طبیعی با ساختار ترانس:
گوتا پرشا، یک پلیمر طبیعی با خواص قابل ملاحظه می باشد. آن از طریق درختان گوتا پلاکوئیوم ( Palaquium gutta trees‏) که یک درخت بومی مخصوص منطقه شبه جزیره مالایا می باشد، تهیه می شود. در سال 1843، William montgomeria گزارش کرد که درMalaya، از گوتا پرشا برای ساختن دستگیره های چاقو استفاده می شود. این ماده در آب داغ نرم می شود و تحت فشار با دست به شکل مطلوب خود در می اید. گزارش وی باعث علاقمندی به این ماده گرد ید و منجربه تشکیل و تاسیس کمپانی Gutta percha گرد ید که تا سال 1930 فعالیت خود را حفظ کرد. این شرکت کالاهای قالب گیری شده را ساخته و تولید کرد.
‏ویژگی های گوتا پرشا غیر معمول می باشد. در درجه حرارت اتاق، جامد می باشد و می تواند دندانه دندانه شده و تورفتگی (Dented) پیدا کند ولیکن به آ سانی نمی شکند. در اثر حرارت آ ن را می توان به صورت نوارهای بلند (Long strips‏) در آ ورد که همانند لاستیک دوباره در اثر کشش به حالت اول خود بر نمی گردد. گوتا پرشا تا حد زیادی خنثی و بی اثر می باشد و در برابر ولکانیزاسیون از خود مقاومت نشان می دهد. مقاومت آ ن نسبت به حمله شیمیایی آ ن را به یک عایق عالی برای سیم های الکتریکی و کابل ها در می آورد. هنگامی که نوارهای بلند گوتا پرشای کشیده شده به طرز بسیار محکمی دو امتداد یک سیم بافته و پیچیده (Wound) شوند، کابل به دست آمده انعطاف پذیر و ضد آب ‏(Waterproof) شده و نسبت به حمله شیمیایی تأثیرناپذیر و نفوذ ناپذیر(Impervious) خواهد شد.
‏نخستین تلگراف زیرآبی در امتداد کاناله انگلیسی از Dover به Calais ساخته شد. موفقیت آن به واسطه عایق بندی با گوتا پرشا بود. در ایالات متحده ، شرکت تلگراف مورس (Morse) یک کابل عایق بندی شده با گوتا پرشا را در عرض رودخانه Hudson‏ در سال 1849 احداث نمود. گوتا پرشا همچنین نخستین کابل ماورای اقیانوس اطلس و عبور کننده از آن را که در سال 1866 احداث شد، محافظت نمود.

مواد طبیعی اصلاح شده

کازئین:
‏کازئین ماده ای است که از شیر دلمه یا شیر بسته شده و منعقد شده ساخته شده است.

      • (Caoutchouc or rubber)لاستیک یا کائوچو:
‏لاستیک طبیعی که به لاستیک صمغی نیز موسوم است، یک شیره (Latex ‏) طبیعی است که در شیره پرورده گیاهی یا عصاره و شیرابه بسیاری از درختان و گیاهان یافت شده است. در مایع سفید و چسبنده حاصل از گیاه ترشح کننده شیره (Milkweed plant)، در صد بالایی از شیره گیاهی وجود دارد. درخت لاستیک، یک تولید کننده نیرومند و سر شار شیره گیاهی می باشد که در حجم بسیار زیادی در هندوستان و مالزی کاشته و پرورش داده می شود.

‏       • سلولوئید (Celluloid) :
‏برای تولید سلولوئید، سلولز در شکل تخمهای پنبه و کتان (Cotton linters)، دستخوش یک سری از اصلاحات شیمیایی می شود. یکی ا‏ز تغییرات، تبدیل کتان به نیتروسلولز می باشد. در سال 1846، یک شیمیدان سوئیسی به نام C.F.Schonbeinکشف کرد که ترکیبی از اسید نیتریک و اسید سولفوریک ، کتان را ‏به ماده منفجره قوی ‏(a high explosive‏) تبدیل می کنند. نیتروسلولز ماده منفجره ای است که تا حد زیادی نیتره شده است. (Moderately nitrated) ماده منفجره نیست ولیکن برای استفاده در روشهای دیگری سودمند می باشد.

 

پلاستیک های سنتتیک یا مصنوعی قدیمی

دکتر لئو اچ-.بائکلند (Leo h. Baekeland)، یک شیمیدان تحقیقاتی بود که بر روی پیدا کردن جانشینی برای لاک شیشه ای و روغن جلا ((Varnishکار می کرد. در ژوئن 1907 ، وقتی که وی مشغول کار کردن، مطالعه وتحقیق بر روی واکنش شیمیایی میان فنل و فرمالدئید بود، یک ماده پلاستیکی را کشف کرد و نام آ ن را باکلیت (Bakelit) گذاشت. فنل و فرمالدئید از شرکت های شیمیایی به جای طبیعت تهیه می شدند. در نتیجه ، این امر موجب شد تا تفاوت اصلی و مهمی میان باکلیت و پلاستیک های طبیعی اصلاح شده پدیداید. Baekland در دفترچه یاداشت خود با کمی اصلاح ، بهبود و پیشرفت نوشت که "ماده کشف شده توسط او ممکن است جانشینی برای سلولوئید و لاستیک سخت بوده باشد." در سال 1909، وی کشف خود را به واحد نیویورک انجمن شیمی آمریکا American Chemical Society‏(ACS‏) گزارش و ارسال نمود. وی مدعی بود که توپهای بیلیارد ساخته شده از باکلیت خواص بسیارعالی ای دارند چرا که خاصیت کشسانی آنها بسیار شبیه به عاج فیل بود.شرکت جنرال باکلیت در سال 1911‏تاسیس شد.

پلاستیک های سنتتیک تجاری

در جریان پیوسته ، مستمر و طویل پلاستیک های جدید، باکلیت نخستین آ نها بود. پیشگامان توسعه پلاستیک های مصنوعی یا سنتتیک تجاری اولیه با دو مشکل اساسی دست و پنجه نرم کردند، یک مشکل نظری و یک مشکل عملی.
مشکل یا مسئله نظری آ ن بود که آ نها درک صریح و روشنی از ماهیت شیمیایی و ساختاری پلاستیک ها نداشتند. چنین ابهامی تا سال 1924 ادامه داشت. زمانی هرمن اشتودینگر ادعا کرد که "پلیمرها، ملکول‏ های خطی طویلی مشتمل بربسیاری از واحدهای کوچک می باشند که از طریق پیوندهای شیمیایی در کنار هم‏نگه داشته شده اند." چنین نظریه ای به عنوان نقطه شروع توسعه بسیاری از پلاستیک ها بشمار می رود.
2 ‏مسئله عملی مستلزم خلوص (Purity) مواد شیمیایی مورد نیاز برای واکنش های شیمیایی پشتیبانی شده (Sustained) در ساخت پلاستیک ها بود. پس از تلاش های فراوانی که منجربه شکست گرد ید شیمیدان ها فهمیدند که شرایط خلوص بسیار دور و متجاوز از انتظارات آ نها و بسیار فراتر از کنترل آ نها می باشد. در نتیجه مواد شیمیایی با بالاترین میزان خلوص که به طور تجاری قابل دسترس می باشند، مترادف گشتند .
‏در طول دهه 1930 ، راه حل هایی که برای این دو مسئله ارائه گردید،آنها را از حالت ابهام خارج کرده و تا حدودی روشن نمود. نیازهای جنگ جهانی دوم نیز در جریان سریع توسعه پلاستیک های جدید سهیم و مؤثر بود.

     پلیمرها

مولکول های بزرگی هستند که از به هم چسبیدن تعداد زیادی مولکول های کوچکتر تشکیل یافته اند این مولکول های کوچکتر را مونومر و عمل اتصال و پیوند آنها را پلیمر شدن (Polymer insertion)  می گویند. چنانچه واحدهای سازندۀ یک پلیمر (مونومر) از یک نوع باشند آن را همونومر و اگر مونومرهای تشکیل دهندۀ یک پلیمر متفاوت باشند به آن کوپلیمر گفته می شود. وزن مولکولی پلیمرها متناسب با شرایط پلیمرها می باشند اگر تعداد مونومرها کم باشند پلیمرها به حالت گاز و چنانچه بیشتر شود پلیمر به حالت مایع و حتی جامد خواهد بود


دسته بندی پلیمر ها

در مهمترین تقسیم بندی پلیمرها به دو گروه تقسیم می شوند:

الف) پلیمرهای طبیعی: که حاصل فعت و انفعالات طبیعی است؛ مانند: نشاسته، سلولز، کائوچوی طبیعی (لاتکس)، پروتئین ها (مانند نخ ابریشم) و انواع صمغ ها و رزین های طبیعی مثل: کهربا، سقز، کتیرا، مواد نفتی مثل قیر یا پلی ساکارید ها مثل قند.

ب)پلیمرهای مصنوعی (سنتزی): یعنی ترکیباتی که توسط انسان به وجود آمده است؛ مثل: الاستومرها، پلاستیک ه و الیاف مصنوعی، پوشش ها و چسب ها و ...

الاستومرها (کائوچو): از پلیمرهای بسیار مهم بوده که به دو گروه طبیعی و مصنوعی تقسیم می شوند:

الف) کائوچوی طبیعی: جسمی است کاملا کشسان (الاستیک) که از شیرۀ درختی واقع در مناطق گرمسیری بدست می آید (لاتکس). لاتکس مایعی سفید رنگ است که 30 تا 45% کائوچو دارد لذا باید از آن استعمال شود. کائوچوی طبیعی بدست آمده از لاتکس حاوی 93% متیل بوتادی ان یا ایزوپرن است. که در ساخت قطعاتی مانند: دستکش ظرف شویی، پستانک یا سر شیر، که از این ماده به وجود می آیند.

ب) کائوچوی مصنوعی: به روش پلیمر شدن تولید می شوند؛ مانند کائوچوی مصنوعی ایزوبوتیلن.

لاستیک

نوع خاصی از پلاستیک می باشد که مهمترین خصوصیات آن قابلیت کشش، انعطاف پذیری و برگشت به حالت اولیه می باشد برای تهیۀ لاستیک مخلوطی از کائوچو (طبیعی یا مصنوعی) را با گوگرد حرارت داده بنابراین گوگرد در محل اتصال های دو گانه با کائوچو ترکیب شده و خواص ویژه و بسیار مهمی را در کائوچو ایجاد می کند؛ مانند: مقاومت به حرارت، مقاومت در برابر عوامل جوی و شیمیایی و سایش و خاصیت ارتجاعی این اختلاف بسیار مهم گوگرد با کائوچو ، ولگانیزاسیون نام دارد. همچنین علاوه بر گوگرد که مهمترین افزودنی است، نرم کننده (پارافین) و دانه های رنگین (پیگمنت) و تقویت کننده (دوده) و پرکننده ها مثل پودر تالک را هم به لاستیک اضافه می کنند.

آزمون‌های پلاستیک ‌ها

خواص مکانیکیخواص فیزیکیخواص حرارتیخواص محیطیخواص نوریخواص الکتریکی

 هر قسمتی از صنعت پلاستیک بر پایۀ داده‌های حاصل از آزمون‌های فنی استوار است تا بتواند فعالیت‌های خود را جهت بخشد. در طراحی محصول و طراحی فرایند، قالب سازان و تولید کنندگان بسته به عوامل انقباض (Shrinkage factors)، قالب هایی را می‌سازند که قطعات نهایی با استفاده از این نوع قالب‌ها ساخته و تولید شوند که شرایط ابعادی لازم را تأمین خواهند کرد.
در این فصل در مورد آزمون‌های فنی که انجام می‌شود در تولید پلاستیک‌ها مختصر توضیحی می‌دهیم؛ این آزمونها براساس محصول تعیین می شود.
خواص مکانیکی

خواص مکانیکی یک ماده، چگونگی پاسخ یا رفتار یک ماده در برابر اعمال نیرو یا قرار گرفتن در معرض بار گذاری را بیان می‌کند. سه نوع از نیروهای مکانیکی که می‌توانند مواد را تحت تأثیر خود قرار دهند وجود دارند. این نیرو‌ها عبارتند از:
1. نیرو‌های فشاری (‍Compression)
2. نیرو‌های تنشی (Tension)
3. نیرو‌های برشی (Shear)
در این قسمت توضیح مختصری در مورد بعضی از آزمون‌های ذکر شده می‌دهیم.

 آزمون استحکام کششی (ASTM D-638, ISO527-1)

استحکام کششی یکی از مهمترین شاخص‌های قدرت و توانایی یا استحکام یک ماده است. در واقع استحکام کششی، توانایی یک ماده را بری تحمل نیرو هایی که از دو طرف به سمت بیرون در جهات مخالف هم،نمونه تست را می‌کشند، تا پدیده شکست اتفاق بیفتد را نشان می‌دهد.استحکام کششی خارج قسمت بیشترین نیروی اعمال شده بر سطح مقطع قسمت باریک نمونه در اثر کشیده شدن است.

 آزمون استحکام فشاری (ASTM D-695,ISO 75-1,75-2)

استحکام فشاری، مقدار نیرویی است که برای گسیختگی یا خرد کردن و فشردن یک ماده لازم می‌باشد.
 آزمون استحکام برشی (ASTM D-732)

استحکام برشی عبازتست از مقدار بار (تنش) مورد نیاز بری ایجاد یک شکست به طور کامل که بخش قابل حرکت را از بخش ساکن از طریق یک عمل مشترک جدا می‌کند. برای محاسبۀ این استحکام، نیروی اعمال شده را بر سطح لبۀ برش پیدا کرده (Sheared edge) تقسیم می‌کنیم.

 آزمون استحکام ضربه‌ای

استحکام یا قدرت ضربه،مقدار تنش لازم برای شکستن یک نمونه است. در هر صورت قدرت ضربه، میزان انرژی جذب شده توسط نمونه را قبل از شکست آن نشان می‌دهند. قدرت ضربه را به دو صورت تعیین می‌کنند:(a) آزمون جرم در حال سقوط و (b) آزمون آونگ آویزان.

 آزمون استحکام خمشی (D-747.ASTM D-790,ISO 178)

استحکام خمشی، میزان تحمل بار یا تنش توسط یک نمونه تست را قبل از وقوع شکست نشان می‌دهد به عبارت دیگر میزان تنش اعمال شده و توانیی تحمل بار را قبل از ینکه نمونه بشکند را بیان می‌کند. هر نوع تنش کششی و فشاری در "فریند خم شدن نمونه" مؤثر می‌باشد.

 آزمون خستگی(Fatigue) و ابعطاف پذیری(Flexing) (خم شدگی) (ASTM D-813,ASTM D-430,ISO 3358)

استحکام خستگی،اصطلاحی است که برای بیان تعداد چرخه‌هایی که نمونه می تواند تنش یا بار اعمال شده را تحمل کند قبل از اینکه بشکند، به کار می‌رود. شکست‌های ناشی از خستگی وابسته به درجه حرارت، تنش و نیز فرکانس، دامنه و مد اعمال تنش می‌باشند.
 آزمون میرایش و جذب ارتعاشات (Damping)

پلاستیک ها می‌توانند ارتعاشات را جذب نموده یا پراکنده کنند. چنین ویژگی، میرایش نامیده می‌شود.به طور متوسط، ظریب میرایش در پلاستیک ها ده برابر بیشتر از فولاد است. استفاده از پلاستیک ها در ساخت چرخدنده‌ها، یاتاقان‌ها، لوازم خانگی و کاربرد‌های معماری، کاربرد مؤثر آنها را در این خاصیت کاهش ارتعاش به اثبات می‌رساند.
 آزمون سختی
 آزمون مقاومت سایشی (ASTM D-1044)

سایش فرایندی است که طی آن سطح یک ماده از طریق اصطحکاک ساییده می‌شود.ساینده‌ها یا دستگاه‌های سایش مقاومت مواد را در برابر سایش، اندازه می گیرند.

خواص فیزیکی

 آزمون تعیین جرم حجمی یا دانسیته و دانسیتۀ نسبی (ASTM D-792,D-1505,ISO 1183)

دانسیته برابر است با جرم واحد حجم. واحد مناسب و صحیح مشتق شده یا مرکب و به دست آمده از واحدهای SI کمیت‌های جرم و حجم بری دانسیته"کیلوگرم بر متر مکعب" می‌باشد ولیکن آن عموما بر حسب واحد گرم بر سانتی‌متر مکعب بیان می‌شود.
دانسیته نسبی عبارتست از نسبت جرم حجم معینی از ماده به جرم حجم برابری از آب در23˚ C (73˚ F) دانسیتۀ نسبی یک کمیت بدون بعد است که در هر سیستم اندازه گیری ثابت باقی خواهند ماند و تغییری نمی‌کند.
 آزمون انقباض قالب (ASTM D-955,ISO 2577)

انقباض خطی قالب بر روی اندازۀ قطعات قالب تأثیر می گذارد. حفره‌های قالب نوعی از قطعات نهایی شدۀ مطلوب بزرگتر می‌باشد. وقتی که انقباض قطعات کامل باشد، آنها بایستی به مشخصات فنی ابعادی مطلوب برسند.
 آزمون خزش کششی (ASTM D-2990.ISO 899)

وقتی که وزنه ا‌ی از یک نمونه تست آویزان شده باشد و موجب شود تا پس از گذشت زمان شکل نمونه تغییر کند، تغییر طول یا تغییرات ابعادی و کرنش پدید آمده در اثر چنین پدیده ا‌ی را خزش می‌نامند. وقتی که خزش در دمای اتاق انجام شود، به جریان سرد (Cold flow) گویند

 آزمون اندازه گیری گرانروی یا ویسکوزیته

خاصیتی از یک مایع که مقاومت درونی آن را در برابر جریان یافتن توصیف می‌کند به ویسکوزیته یا گرانروی موسوم می‌باشد. هر چه مایع جنبش کمتری داشته باشد، ویسکوزیتۀ آن بزرگتر است. ویسکوزیته را با واحد پاسکال . ثانیه (Pa×s) اندازه‌گیری می‌کنند که پوآز (Poises) نامیده می‌شود.

خواص حرارتی
• آزمون قابلیت هدیت گرمایی (ASTM C-177)
• آزمون اندازه گیری گرمای ویژه (ظرفیت گرمیی)
• آزمون تعیین ضریب انبساط حرارتی (ASTM D-696,D-864)
• آزمون در جه حرارت انحراف (ASTM D-648,ISO 75)
• آزمون مقاومت در برابر سرما
• قابلیت شعله ور شدن یا اشتعال‌پذیری
• آزمون تعیین شاخص ذوب (ASTM D-1238,ISO 1133)
• آزمون تعیین درجه حرارت انتقال شیشه‌ی (Tg)
• آزمون نقطۀ نرم شدن (ASTM D-1525,ISO 306)

خواص محیطی
• خواص شیمیایی
• آزمون قابلیت فرسایش در برابر آب و هوا و یا تحمل شریط نامساعد جوی
• آزمون مقاومت در برابر تابش فرابنفش
• آزمون تراویی یا تعیین قابلیت نفوذ‌پذیری
• آزمون جذب آب
• آزمون تعیین مقاومت بیوشیمیایی
• آزمون ترکزایی ناشی از تنش

خواص نوری
• آزمون تابش آئینه‌ی
• آزمون تعیین میزان عبور نور
• آزمون رنگ
• آزمون ضریب شکست
خواص الکتریکی
• آزمون مقاومت در برابر قوس الکتریکی
• آزمون تعیین مقاومت ویژه
• آزمون استحکام دی‌الکتریک
• آزمون ثابت دی‌الکتریک
• آزمون تعیین ضریب اتلاف

ماشینکاری و عملیات پرداخت نهایی روی قطعات پلاستیکی و کامپوزیتی
 در این قسمت شما به طور مختصر با چند روش ماشین کاری آشنا می شوید. قطعات پلاستیکی قالب گیری شده غالبا به عملیات تکمیلی دیگری نظیر زایده گیری، برشکاری و پوشش کاری و آنیلینگ نیاز دارند.

 برشکاری با اره (Sawing)

تقریبا از همه انواع تیغه اره های Saws می توان برای برشکاری پلاستیک ها استفاده نمود. تیغه اره های پشت دار، اره های فرم بر ( Coping saw) ، اره های دستی معمولی، اره های شمشیری واره های جواهر سازی را می توان برای برشکاری تزیین و محدود پلاستیک ها به کار بردَ، در برشکاری پلاستیک ها با اره،‌فرم دندانه های تیغه اره خیلی با اهمیت است.

و...

NikoFile



خرید و دانلود دانلود مقاله سیر تحول پلاستیک ها و روش های نوین در تولید و بازیافت


پایان نامه خصوصیات چینی و سرامیک 181 ص

پایان نامه خصوصیات چینی  و سرامیک 181 ص

پیشگفتار

در حال حاضر سرامیک بخش وسیعی از صنایع مختلف معاصر را در برمی گیرد. در عین اینکه این صنعت به قدمت اولین تمدن بشری است ولی اکنون محصولات سرامیکی یکی از مفیدترین پدیده هایی است که در پیشرفت علوم نقش مؤثری را بر عهده دارد.

محصولات سرامیکی دارای تنوع بسیار است. بعضی از آنها همواره مورد استفاده عموم قرار می گیرند و بعضی دیگر در رابطه با مصارف خاصی است که متخصصین از آنها بهره برداری می کنند.

ذیلاً تعدادی از محصولات مذکور ذکر می گردد:

الف- اشیاء هنری یا تزئینی مانند مجسمه- پلاک و غیره

ب- وسایل غذاخوری و لوازم آشپزخانه (Talbo ware)

ج- وسایل بهداشتی از قبیل دستشویی، وان حمام و غیره (Sanitary ware)

د- کف پوشها

هـ- کاشی ها

و- لوله های فاضل آب

ز- الماس های مصنوعی (Synthetic diamonds) مورد استفاده در لوازم صوتی

ح- قسمتی از مغزهای الکترونیکی (Memory Cells)

ط- بخشی از وسایل الکتریکی (مقره- پایه و ترمینال)

ی- شمع های ماشین (Spark Pluge)

ک- عایق ها و اجسام نسوز (Refractories)

ل- وسایل آزمایشگاهی مانند بوته ها، هاونگ های چینی و غیره

م- دندان های مصنوعی (Denture Ceramics)

ن- سنباده ها و ابزارهای برش (Abrasion resisting Ware) و غیره

فقط قسمتی از این مجموعه وسیع را تشکیل می دهند.

زمان ساخت سرامیک ها سالیان قبل و مقارن با رشد فکری انسان های اولیه و ایجاد نخستین تمدن های بشری بوده است.

بشر نخستین پس از شناخت محیط اطراف خودو کشف آتش شروع به ساختن ابزار، لوازم و اشیاء مورد نیاز خود کرد: در هم آمیختن آب و خاک و سخت شدن خمیره آنها بر اثر تبخیر مراحلی هستند که طبیعت به انسان آموخت. قدیمی ترین کشف بشر اولیه که بر اساس کاوش ها و دانستنی های ابتدایی او استوار بوده. همانا استفاده از حرارت آتش جهت سختی و استحکام اشیاء و اجسام گلی می باشد.

گرمای حاصله از حرارت آتش نه تنها باعث استحکام و سخت شدن اشیاء گلی می گردید بلکه گاهی اوقات بر حسب اتفاق تعدادی از آنها نیز بر اثر حرارت زیاد ذوب می شدند. زمانی که آتش فرو می نشست وجود قطعات ذوب شده و گاهی درخشان و سخت در خاکسترهای بر جای مانده انسان را متحیر و وادار به تفکر می نمود. به تدریج در اثر این گونه اتفاقات توجه بشر به ذوب مواد معدنی و نتیجتاً کشف فلزات جلب شد.

گرچه بشر با شناخت فلزات دریچه ای از دنیای تمدن را برخود گشود. ولی مشکل فرم دادن و نیز شکل گرفتن فلزات یکی از مسائلی است که انسان از همان ابتدا با آن برخورد نمود. در مقایسه با فلزات خاصیت شکل پذیری که از خمیره گل حاصل می گشت همواره باعث تقویت نیروی خلاقیت بشر می شد. این خصوصیت موجب می گردید که بتواند به آسانی شکل های مختلف را تجربه نموده و هر آنچه که می اندیشید عملاً بسازد حتی اکثر شکل های فلزی ابتدا از گل های طبیعی ساخته شده و پس از قالب گیری جهت شکل دادن فلزات از آنهااستفاده می گردیده است.

در این زمان است که اشیاء گلی آتش خورده و سخت به وفور در محیط زیست انسان یافت می گردد که از آن جمله می توان ظروف تهیه غذا و نگهداری آن، ابزارها، مجسمه ها آجر بناها و حتی تابوت ها و بسیاری دیگر را نام برد. کشف فلزات باعث گردید که صور، نقوش، طرز ساخت اجسام و اشیاء سرامیکی تغییرات اساسی و کلی پیدا کند و هنرمندان و صنعتگران آن زمان روش های جدیدی را در تولید و آفرینش اشیاء برگزیده و تجربه نمایند.

ویژگی هایی که در ساخت اشیاء سرامیکی وجود داشت موجب تداوم، تکرار و تکثیر آن وسایل گردید. به عبارتی دیگر هر آنچه که بشر می اندیشید می توانست بدون مانعی بسازد و این خود باعث اندوختن و انباشتن دانستنی ها و تجربیات فراوانی گشت. قرن ها قبل از طرح علوم فیزیکی و شیمیایی و حتی بیش از اقدام به کیمیاگری، انسان اولیه از این دانستنی ها و تجربیات بهره گرفته، به صورتی با علم و تکنیک سرامیک ها آشنایی پیدا کرده بود.

هم چنین نظری به محتوی فرم های اولیه و نقوش آنها نشان می دهد که بشر همواره از طریق ساخت و تزئین اجسام سرامیکی در جهت حس زیبایی دوستی، فلسفه ها و خلاقیت های هنری خود مدد گرفته، چنانکه فرهنگ، آداب ورسوم، عواطف و احساسات او همواره در تولید و خلق این اشیاء مؤثر بوده است.

به جهت گسترش صنعت سرامیک در مسیر بررسی و شناخت این اشیاء لازم به نظر می رسد که پس از مقدمه ذکر شده و تعاریف آینده نگاهی گذرا به تاریخ سرامیک انداختده و سپس به پژوهش در طبیعت، مواد خام درون آن و نیز بهره گیری از هر عنصر بپردازیم و آنگاه روش ها، تکنیک ها و سایر عوامل سازنده را بر اساس ساخت و تولید سرامیک ها، مورد تجزیه و تحلیل قرار دهیم.



خرید و دانلود پایان نامه خصوصیات چینی  و سرامیک 181 ص


روغن های صنعتی و اصول روانکاری

کتاب روغن های صنعتی و اصول روانکاری که توسط شرکت ره آوران فنون پتروشیمی گردآوری شده است.

این کتاب به صورت فایل PDF و حاوی 89 صفحه می باشد. قیمت اصلی این کتاب در نسخه الکترونیکی 3500 تومان است.

 



خرید و دانلود روغن های صنعتی و اصول روانکاری


تحقیق در مورد متالوژی

تحقیق در مورد متالوژی

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه34

متالورژی، علم و تکنولوژی استفاده از فلزات است. متالورژی، به عنوان یک فن از زمانهای قدیم وجود داشته است. انسانهای گذشته بسیاری از فلزات موجود در طبیعت را می شناختند و به کار می بردند. 3500 سال قبل از میلاد از طلا برای ساختن زیورآلات، بشقاب و ظروف استفاده میشده است. فن گدازش، پالایش و شکل دادن فلزات توسط مصریان و چینی ها بسیار تکامل یافت. مصریان قدیم می دانستند چگونه آهن را از سنگ آهن جدا کنند و می دانستند که فولاد سختی پذیر است. اما استفاده از آهن تا سال 1000 قبل از میلاد رایج نشده بود. استفاده از آهن نزد مردم عهد باستان متداول نبود و آنها استفاده از طلا، نقره و مس و برنج را ترجیح می دادند.

عموما در قرون وسطی علم کار بر روی فلزات مستقیما از استاد به شاگرد منتقل می شد و در نتیجه بسیاری از فرآیندها با خرافات می آمیخت. در مورد فرآیندهای متالورزیکی بسیار کم نوشته شده بود تا اینکه برنیگوچیو کتاب پیوتکنیا را در سال 1540 و به دنبال آن کتاب دِرِ متالورژیکا را در سال 1556 منتشر کرد. طی سال های متمادی توسط مردمی که در تقلید جنس و ساتار فولاد دمشق می کوشیدند، اطلاعات بسیاری به علم افزوده شد.

تا آغاز آخرین ربع قرن نوزدهم، اغلب تحقیقات در مورد ساختار فلز با چشم غیرمسلح و به طور سطحی صورت می گرفت. علم ساختار فلزها تقریبا وجود نداشت. در این میان، نیاز به وجود افرادی که سابقه ی علمی انها بیشتر از سابقه علمی و تجربی شان بود، احساس می شد.

بعدها در سال 1922 با کشف روشهای پراش اشعه X و مکانیک موجی، آگاهی های بیشتری درباره ی ساختار و خواص فلزها حاصل شد.

متالورژی حقیقتاً علم مستقلی نیست، زیرا بسیاری از مفاهیم اساسی آن از فییک، شیمی و بلورشناسی مشتق می شود. متخصصان متالورژی به طور فزآینده ای در تکنولوؤی جدید اهمیت پیدا کرده اند. سال ها پیش بخش عمده ی قطعات فولادی از فولاد کم کربن ارزان قیمت تهیه می شد که به سهولت ماشینکاری و ساخته می شد. عملیات گرمایی به طور عمده ای برای ابزار به کار برده می شد. طراحان قادر نبودند غیریکنواختی ساختاری، عیوب سطحی و غیره را به حساب بیاورند و کار درست آن بود که ضریب ایمنی بزرگ استفاده کنند. در نتیجه، ماشینها بسیار سنگین تر از حد لازم بودند و وزن زیاد نشانه ای از مرغوبیت محسوب مس شد. این وضع تا حدودی تا سالهای اخیر نیز اثر خود را حفظ کرده بود، اما با هدایت صنایع هواپیمایی و خودروسازی کم کم برطرف می شود. این صنایع بر اهمیت نسبت استحکام به وزن در طراحی خوب تأکید می کردند و این تأکید ، به ایجاد آلیاژهای جدید سبک و پراستحکام منجر شد]1[.

 

 

   

 

 


دسته بندی رشته های متالورژی

 

متالورژی استخراجی یا فرآیندی که علم به دست آوردن فلز از کانه است و معدن کاری، تغلیظ استخراج و پالایش فلزها و آلیاژها را در برمی گیرد؛

متالورژی فیزیکی؛ علمی که با مشخصه های فیزیکی و مکانیکی فلزها و آلیاژها سر و کار دارد. در این رشته خواص فلزها و آلیاژها، که 3 متغیر زیر بر آنها اثر می گذارند، بررسی می شود:

الف. ترکیب شیمیایی– اجزای شیمیایی آلیاژ؛

ب. عملیات مکانیکی– هر عملیاتی که سبب تغییر شکل فلز می شود مانند نورد(Rolling)، کشش (Drawing)، شکل دادن یا ماشینکاری؛

ج. عملیات گرمایی – اثر دما و آهنگ گرم یا سردکردن.

 

 

 


 

مفاهیم اساسی در شکل دهی فلزات

 

هدف اصلی از عملیات شکل دهی فلز، ایجاد تغییر شکل مطلوب است. در این راستا، برای رسیدن به تغییر شکل مطلوب و همراه با خواص مورد نظر ما، باید دو نکته ی مهم مورد توجه قرار گیرند:

 

نیروهای لازم برای شکل دهی فلزات؛خواص لازم برای شکل دهی ماده ای که مورد تغییر شکل قرار می گیرد.

 

همان طور که می دانیم، خواص ماده، بر فرآیند شکل دهی تأثیر می گذارد و بهینه سازی آن برای تغییر شکل حائز اهمیت است. اگرچه موضوعاتی چون سایش، انتقال حرارت و طراحی مکانیکی، دارای اهمیت هستند، اما در اینجا، رابطه متقابل بین ابزار و فلز در حین تغییر شکل پلاستیک و همچنین روابط متقابل بین فرآیند تغییر شکل (در اینجا نورد) و فلز مورد نظر اهمیت بیشتری دارد.



خرید و دانلود تحقیق در مورد متالوژی