پایان نامه مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع
چکیده
در سالهای اخیر، مسایل جدی کیفیت توان در ارتباط با افت ولتاژهای ایجاد شده توسط تجهیزات و مشتریان، مطرح شده است، که بدلیل شدت استفاده از تجهیزات الکترونیکی حساس در فرآیند اتوماسیون است. وقتی که دامنه و مدت افت ولتاژ، از آستانه حساسیت تجهیزات مشتریان فراتر رود ، ممکن است این تجهیزات درست کار نکند، و موجب توقف تولید و هزینهی قابل توجه مربوطه گردد. بنابراین فهم ویژگیهای افت ولتاژها در پایانه های تجهیزات لازم است. افت ولتاژها عمدتاً بوسیله خطاهای متقارن یا نامتقارن در سیستمهای انتقال یا توزیع ایجاد میشود. خطاها در سیستمهای توزیع معمولاً تنها باعث افت ولتاژهایی در باسهای مشتریان محلی میشود. تعداد و ویژگیهای افت ولتاژها که بعنوان عملکرد افت ولتاژها در باسهای مشتریان شناخته میشود، ممکن است با یکدیگر و با توجه به مکان اصلی خطاها فرق کند. تفاوت در عملکرد افت ولتاژها یعنی، دامنه و بویژه نسبت زاویه فاز، نتیجه انتشار افت ولتاژها از مکانهای اصلی خطا به باسهای دیگر است. انتشار افت ولتاژها از طریق اتصالات متنوع ترانسفورماتورها، منجر به عملکرد متفاوت افت ولتاژها در طرف ثانویه ترانسفورماتورها میشود. معمولاً، انتشار افت ولتاژ بصورت جریان یافتن افت ولتاژها از سطح ولتاژ بالاتر به سطح ولتاژ پایینتر تعریف میشود. بواسطه امپدانس ترانسفورماتور کاهنده، انتشار در جهت معکوس، چشمگیر نخواهد بود. عملکرد افت ولتاژها در باسهای مشتریان را با مونیتورینگ یا اطلاعات آماری میتوان ارزیابی کرد. هر چند ممکن است این عملکرد در پایانههای تجهیزات، بواسطه اتصالات سیمپیچهای ترانسفورماتور مورد استفاده در ورودی کارخانه، دوباره تغییر کند. بنابراین، لازم است بصورت ویژه انتشار افت ولتاژ از باسها به تاسیسات کارخانه از طریق اتصالات متفاوت ترانسفورماتور سرویس دهنده، مورد مطالعه قرار گیرد. این پایان نامه با طبقه بندی انواع گروههای برداری ترانسفورماتور و اتصالات آن و همچنین دسته بندی خطاهای متقارن و نامتقارن به هفت گروه، نحوه انتشار این گروهها را از طریق ترانسفورماتورها با مدلسازی و شبیهسازی انواع اتصالات سیم پیچها بررسی میکند و در نهایت نتایج را ارایه مینماید و این بررسی در شبکه تست چهارده باس IEEE برای چند مورد تایید میشود.
کلید واژهها: افت ولتاژ، مدلسازی ترانسفورماتور، اتصالات ترانسفورماتور، اشباع، شبیه سازی
تعداد صفحات 141 word
فهرست مطالب
1-1 مقدمه. 2
1-2 مدلهای ترانسفورماتور. 3
1-2-1 معرفی مدل ماتریسی Matrix Representation (BCTRAN Model) 4
1-2-2 مدل ترانسفورماتور قابل اشباع Saturable Transformer Component (STC Model) 6
1-2-3 مدلهای بر مبنای توپولوژی Topology-Based Models. 7
2- مدلسازی ترانسفورماتور. 13
2-1 مقدمه. 13
2-2 ترانسفورماتور ایده آل.. 14
2-3 معادلات شار نشتی.. 16
2-4 معادلات ولتاژ. 18
2-5 ارائه مدار معادل.. 20
2-6 مدلسازی ترانسفورماتور دو سیم پیچه. 22
2-7 شرایط پایانه ها (ترمینالها). 25
2-8 وارد کردن اشباع هسته به شبیه سازی.. 28
2-8-1 روشهای وارد کردن اثرات اشباع هسته. 29
2-8-2 شبیه سازی رابطه بین و ........... 33
2-9 منحنی اشباع با مقادیر لحظهای.. 36
2-9-1 استخراج منحنی مغناطیس کنندگی مدار باز با مقادیر لحظهای.. 36
2-9-2 بدست آوردن ضرایب معادله انتگرالی.. 39
2-10 خطای استفاده از منحنی مدار باز با مقادیر rms. 41
2-11 شبیه سازی ترانسفورماتور پنج ستونی در حوزه زمان.. 43
2-11-1 حل عددی معادلات دیفرانسیل.. 47
2-12 روشهای آزموده شده برای حل همزمان معادلات دیفرانسیل.. 53
3- انواع خطاهای نامتقارن و اثر اتصالات ترانسفورماتور روی آن.. 57
3-1 مقدمه. 57
3-2 دامنه افت ولتاژ. 57
3-3 مدت افت ولتاژ. 57
3-4 اتصالات سیم پیچی ترانس.... 58
3-5 انتقال افت ولتاژها از طریق ترانسفورماتور. 59
3-5-1 خطای تکفاز، بار با اتصال ستاره، بدون ترانسفورماتور. 593-5-2 خطای تکفاز، بار با اتصال مثلث، بدون ترانسفورماتور. 593-5-3 خطای تکفاز، بار با اتصال ستاره، ترانسفورماتور نوع دوم. 603-5-4 خطای تکفاز، بار با اتصال مثلث، ترانسفورماتور نوع دوم. 603-5-5 خطای تکفاز، بار با اتصال ستاره، ترانسفورماتور نوع سوم. 603-5-6 خطای تکفاز، بار با اتصال مثلث، ترانسفورماتور نوع سوم. 603-5-7 خطای دو فاز به هم، بار با اتصال ستاره، بدون ترانسفورماتور. 613-5-8 خطای دو فاز به هم، بار با اتصال مثلث، بدون ترانسفورماتور. 613-5-9 خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع دوم. 613-5-10 خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع دوم. 613-5-11 خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع سوم. 623-5-12 خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع سوم. 623-5-13 خطاهای دو فاز به زمین.. 623-6 جمعبندی انواع خطاها 64
3-7 خطای Type A ، ترانسفورماتور Dd.. 65
3-8 خطای Type B ، ترانسفورماتور Dd.. 67
3-9 خطای Type C ، ترانسفورماتور Dd.. 69
3-10 خطاهای Type D و Type F و Type G ، ترانسفورماتور Dd.. 72
3-11 خطای Type E ، ترانسفورماتور Dd.. 72
3-12 خطاهای نامتقارن ، ترانسفورماتور Yy.. 73
3-13 خطاهای نامتقارن ، ترانسفورماتور Ygyg.. 73
3-14 خطای Type A ، ترانسفورماتور Dy.. 73
3-15 خطای Type B ، ترانسفورماتور Dy.. 74
3-16 خطای Type C ، ترانسفورماتور Dy.. 76
3-17 خطای Type D ، ترانسفورماتور Dy.. 77
3-18 خطای Type E ، ترانسفورماتور Dy.. 78
3-19 خطای Type F ، ترانسفورماتور Dy.. 79
3-20 خطای Type G ، ترانسفورماتور Dy.. 80
3-21 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type A شبیه سازی با PSCAD.. 81
شبیه سازی با برنامه نوشته شده. 83
3-22 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type B شبیه سازی با PSCAD.. 85
شبیه سازی با برنامه نوشته شده. 87
3-23 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type C شبیه سازی با PSCAD.. 89
شبیه سازی با برنامه نوشته شده. 91
3-24 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type D شبیه سازی با PSCAD.. 93
شبیه سازی با برنامه نوشته شده. 95
3-25 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type E شبیه سازی با PSCAD.. 97
شبیه سازی با برنامه نوشته شده. 99
3-26 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type F شبیه سازی با PSCAD.. 101
شبیه سازی با برنامه نوشته شده. 103
3-27 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type G شبیه سازی با PSCAD.. 105
شبیه سازی با برنامه نوشته شده. 107
3-28 شکل موجهای ولتاژ – جریان چند باس شبکه 14 باس IEEE برای خطای Type D در باس 5. 109
3-29 شکل موجهای ولتاژ – جریان چند باس شبکه 14 باس IEEE برای خطای Type G در باس 5. 112
3-30 شکل موجهای ولتاژ – جریان چند باس شبکه 14 باس IEEE برای خطای Type A در باس 5. 115
4- نتیجه گیری و پیشنهادات... 121
مراجع. 123
فهرست شکلها
شکل (1-1) مدل ماتریسی ترانسفورماتور با اضافه کردن اثر هسته
صفحه 5
شکل (1-2) ) مدار ستارهی مدل ترانسفورماتور قابل اشباع
صفحه 6
شکل (1-3) ترانسفورماتور زرهی تک فاز
صفحه 9
شکل (1-4) مدار الکتریکی معادل شکل (1-3)
صفحه 9
شکل (2-1) ترانسفورماتور
صفحه 14
شکل (2-2) ترانسفورماتور ایده ال
صفحه 14
شکل (2-3) ترانسفورماتور ایده ال بل بار
صفحه 15
شکل (2-4) ترانسفورماتور با مولفه های شار پیوندی و نشتی
صفحه 16
شکل (2-5) مدرا معادل ترانسفورماتور
صفحه 20
شکل (2-6) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه
صفحه 24
شکل (2-7) ترکیب RL موازی
صفحه 26
شکل (2-8) ترکیب RC موازی
صفحه 27
شکل (2-9) منحنی مغناطیس کنندگی مدار باز ترانسفورماتور
صفحه 30
شکل (2-10) رابطه بین و
صفحه 30
شکل (2-11) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه با اثر اشباع
صفحه 32
شکل (2-12) رابطه بین و
صفحه 32
شکل (2-13) رابطه بین و
صفحه 32
شکل (2-14) منحنی مدار باز با مقادیر rms
صفحه 36
شکل (2-15) شار پیوندی متناظر شکل (2-14) سینوسی
صفحه 36
شکل (2-16) جریان لحظه ای متناظر با تحریک ولتاژ سینوسی
صفحه 36
شکل (2-17) منحنی مدار باز با مقادیر لحظهای
صفحه 40
شکل (2-18) منحنی مدار باز با مقادیر rms
صفحه 40
شکل (2-19) میزان خطای استفاده از منحنی rms
صفحه 41
شکل (2-20) میزان خطای استفاده از منحنی لحظهای
صفحه 41
شکل (2-21) مدار معادل مغناطیسی ترانسفورماتور سه فاز سه ستونه
صفحه 42
شکل (2-22) مدار معادل الکتریکی ترانسفورماتور سه فاز سه ستونه
صفحه 43
شکل (2-23) مدار معادل مغناطیسی ترانسفورماتور سه فاز پنج ستونه
صفحه 44
شکل (2-24) ترانسفورماتور پنج ستونه
صفحه 45
شکل (2-25) انتگرالگیری در یک استپ زمانی به روش اولر
صفحه 47
شکل (2-26) انتگرالگیری در یک استپ زمانی به روش trapezoidal
صفحه 49
شکل (3-1) دیاگرام فازوری خطاها
صفحه 62
شکل (3-2) شکل موج ولتاژ Vab
صفحه 63
شکل (3-3) شکل موج ولتاژ Vbc
صفحه 63
شکل (3-4) شکل موج ولتاژ Vca
صفحه 63
شکل (3-5) شکل موج ولتاژ Vab
صفحه 63
شکل (3-6) شکل موج جریان iA
صفحه 64
شکل (3-7) شکل موج جریان iB
صفحه 64
شکل (3-8) شکل موج جریان iA
صفحه 64
شکل (3-9) شکل موج جریان iA
صفحه 64
شکل (3-10) شکل موجهای ولتاژ Va , Vb , Vc
صفحه 65
شکل (3-11) شکل موجهای ولتاژ Va , Vb , Vc
صفحه 68
شکل (3-12) شکل موجهای جریان ia , ib , ic
صفحه 68
شکل (3-13) شکل موجهای ولتاژ Va , Vb , Vc
صفحه 69
شکل (3-14) شکل موجهای ولتاژ Va , Vb , Vc
صفحه 69
شکل (3-15) شکل موجهای جریان , iB iA
صفحه 69
شکل (3-16) شکل موج جریان iA
صفحه 70
شکل (3-16) شکل موج جریان iB
صفحه 70
شکل (3-17) شکل موج جریان iC
صفحه 70
شکل (3-18) شکل موجهای ولتاژ Va , Vb , Vc
صفحه 71
شکل (3-19) شکل موجهای جریان ia , ib , ic
صفحه 71
شکل (3-20) شکل موجهای ولتاژ Va , Vb , Vc
صفحه 73
شکل (3-21) شکل موجهای جریان ia , ib , ic
صفحه 73
شکل (3-22) شکل موجهای جریان ia , ib , ic
صفحه 74
شکل (3-23) شکل موج ولتاژ Va
صفحه 74
شکل (3-24) شکل موج ولتاژ Vb
صفحه 74
شکل (3-25) شکل موج ولتاژ Vc
صفحه 74
شکل (3-26) شکل موج جریانiA
صفحه 74
شکل (3-27) شکل موج جریان iB
صفحه 74
شکل (3-28) شکل موج جریان iC
صفحه 74
شکل (3-29) شکل موج جریانiA
صفحه 75
شکل (3-30) شکل موج جریان iB
صفحه 75
شکل (3-31) موج جریان iC
صفحه 75
شکل (3-32) شکل موج جریانiA
صفحه 75
شکل (3-33) شکل موج جریان iB
صفحه 75
شکل (3-34) شکل موج جریان iC
صفحه 75
شکل (3-35) شکل موج ولتاژ Va
صفحه 76
شکل (3-36) شکل موج ولتاژ Vb
صفحه 76
شکل (3-37) شکل موج ولتاژ Vc
صفحه 76
شکل (3-38) شکل موج جریانiA
صفحه 76
شکل (3-39) شکل موج جریان iB
صفحه 76
شکل (3-40) شکل موج جریان iC
صفحه 76
شکل (3-41) شکل موج جریانiA
صفحه 76
شکل (3-42) شکل موج جریان iB
صفحه 76
شکل (3-43) شکل موج جریان iC
صفحه 76
شکل (3-44) شکل موج ولتاژ Va
صفحه 77
شکل (3-45) شکل موج ولتاژ Vb
صفحه 77
شکل (3-46) شکل موج ولتاژ Vc
صفحه 77
شکل (3-47) شکل موج جریانiA
صفحه 77
شکل (3-48) شکل موج جریان iB
صفحه 77
شکل (3-49) شکل موج جریان iC
صفحه 77
شکل (3-50) شکل موج جریانiA
صفحه 77
شکل (3-51) شکل موج جریان iB
صفحه 77
شکل (3-52) شکل موج جریان iC
صفحه 77
شکل (3-53) شکل موج ولتاژ Va
صفحه 78
شکل (3-54) شکل موج ولتاژ Vb
صفحه 78
شکل (3-55) شکل موج ولتاژ Vc
صفحه 78
شکل (3-56) شکل موج جریانiA
صفحه 78
شکل (3-57) شکل موج جریان iB
صفحه 78
شکل (3-58) شکل موج جریان iC
صفحه 78
شکل (3-59) شکل موج جریانiA
صفحه 78
شکل (3-60) شکل موج جریان iB
صفحه 78
شکل (3-61) شکل موج جریان iC
صفحه 78
شکل (3-62) شکل موج ولتاژ Va
صفحه 79
شکل (3-63) شکل موج ولتاژ Vb
صفحه 79
شکل (3-64) شکل موج ولتاژ Vc
صفحه 79
شکل (3-65) شکل موج جریانiA
صفحه 79
شکل (3-66) شکل موج جریان iB
صفحه 79
شکل (3-67) شکل موج جریان iC
صفحه 79
شکل (3-68) شکل موج جریانiA
صفحه 79
شکل (3-69) شکل موج جریان iB
صفحه 79
شکل (3-70) شکل موج جریان iC
صفحه 79
شکل (3-71) شکل موج ولتاژ Va
صفحه 80
شکل (3-72) شکل موج ولتاژ Vb
صفحه 80
شکل (3-73) شکل موج ولتاژ Vc
صفحه 80
شکل (3-74) شکل موج جریانiA
صفحه 80
شکل (3-75) شکل موج جریان iB
صفحه 78
شکل (3-76) شکل موج جریان iC
صفحه 80
شکل (3-77) شکل موج جریانiA
صفحه 80
شکل (3-78) شکل موج جریان iB
صفحه 80
شکل (3-79) شکل موج جریان iC
صفحه 80
شکل (3-80) شکل موجهای ولتاژ) (kV با PSCAD
صفحه 81
شکل (3-81) شکل موجهای ولتاژ) (kV با PSCAD
صفحه 81
شکل (3-82) شکل موجهای جریان) (kV با PSCAD
صفحه 82
شکل (3-83) شکل موجهای جریان) (kV با PSCAD
صفحه 82
شکل (3-84) شکل موجهای ولتاژ با برنامه نوشته شده
صفحه 83
شکل (3-85) شکل موجهای ولتاژ با برنامه نوشته شده
صفحه 83
شکل (3-86) شکل موجهای جریان با برنامه نوشته شده
صفحه 84
شکل (3-87) شکل موجهای جریان با برنامه نوشته شده
صفحه 84
شکل (3-88) شکل موجهای ولتاژ) (kV با PSCAD
صفحه 85
شکل (3-89) شکل موجهای ولتاژ) (kV با PSCAD
صفحه 85
شکل (3-90) شکل موجهای جریان) (kV با PSCAD
صفحه 86
شکل (3-91) شکل موجهای جریان) (kV با PSCAD
صفحه 86
شکل (3-92) شکل موجهای ولتاژ با برنامه نوشته شده
صفحه 87
شکل (3-93) شکل موجهای ولتاژ با برنامه نوشته شده
صفحه 87
شکل (3-94) شکل موجهای جریان با برنامه نوشته شده
صفحه 88
شکل (3-95) شکل موجهای جریان با برنامه نوشته شده
صفحه 88
شکل (3-96) شکل موجهای ولتاژ) (kV با PSCAD
صفحه 89
شکل (3-97) شکل موجهای ولتاژ) (kV با PSCAD
صفحه 89
شکل (3-98) شکل موجهای جریان) (kV با PSCAD
صفحه 90
شکل (3-99) شکل موجهای جریان) (kV با PSCAD
صفحه 90
شکل (3-100) شکل موجهای ولتاژ با برنامه نوشته شده
صفحه 91
شکل (3-101) شکل موجهای ولتاژ با برنامه نوشته شده
صفحه 91
شکل (3-102) شکل موجهای جریان با برنامه نوشته شده
صفحه 92
شکل (3-103) شکل موجهای جریان با برنامه نوشته شده
صفحه 92
شکل (3-104) شکل موجهای ولتاژ) (kV با PSCAD
صفحه 93
شکل (3-105) شکل موجهای ولتاژ) (kV با PSCAD
صفحه 93
شکل (3-106) شکل موجهای جریان) (kV با PSCAD
صفحه 94
شکل (3-107) شکل موجهای جریان) (kV با PSCAD
صفحه 94
شکل (3-108) شکل موجهای ولتاژ با برنامه نوشته شده
صفحه 95
شکل (3-109) شکل موجهای ولتاژ با برنامه نوشته شده
صفحه 95
شکل (3-110) شکل موجهای جریان با برنامه نوشته شده
صفحه 96
شکل (3-111) شکل موجهای جریان با برنامه نوشته شده
صفحه 96
شکل (3-112) شکل موجهای ولتاژ) (kV با PSCAD
صفحه 97
شکل (3-113) شکل موجهای ولتاژ) (kV با PSCAD
صفحه 97
شکل (3-114) شکل موجهای جریان) (kV با PSCAD
صفحه 98
شکل (3-115) شکل موجهای جریان) (kV با PSCAD
صفحه 98
شکل (3-116) شکل موجهای ولتاژ با برنامه نوشته شده
صفحه 99
شکل (3-117) شکل موجهای ولتاژ با برنامه نوشته شده
صفحه 99
شکل (3-118) شکل موجهای جریان با برنامه نوشته شده
صفحه 100
شکل (3-119) شکل موجهای جریان با برنامه نوشته شده
صفحه 100
شکل (3-120) شکل موجهای ولتاژ) (kV با PSCAD
صفحه 101
شکل (3-121) شکل موجهای ولتاژ) (kV با PSCAD
صفحه 101
شکل (3-122) شکل موجهای جریان) (kV با PSCAD
صفحه 102
شکل (3-123) شکل موجهای جریان) (kV با PSCAD
صفحه 102
شکل (3-124) شکل موجهای ولتاژ با برنامه نوشته شده
صفحه 103
شکل (3-125) شکل موجهای ولتاژ با برنامه نوشته شده
صفحه 103
شکل (3-126) شکل موجهای جریان با برنامه نوشته شده
صفحه 104
شکل (3-127) شکل موجهای جریان با برنامه نوشته شده
صفحه 104
شکل (3-128) شکل موجهای ولتاژ) (kV با PSCAD
صفحه 105
شکل (3-129) شکل موجهای ولتاژ) (kV با PSCAD
صفحه 105
شکل (3-130) شکل موجهای جریان) (kV با PSCAD
صفحه 106
شکل (3-131) شکل موجهای جریان) (kV با PSCAD
صفحه 106
شکل (3-132) شکل موجهای ولتاژ با برنامه نوشته شده
صفحه 107
شکل (3-133) شکل موجهای ولتاژ با برنامه نوشته شده
صفحه 107
شکل (3-134) شکل موجهای جریان با برنامه نوشته شده
صفحه 108
شکل (3-135) شکل موجهای جریان با برنامه نوشته شده
صفحه 108
شکل (3-136) شکل موجهای ولتاژ) (kV
صفحه 109
شکل (3-137) شکل موجهای ولتاژ) (kV
صفحه 110
شکل (3-138) شکل موجهای جریان (kA)
صفحه 111
شکل (3-139) شکل موجهای ولتاژ) (kV
صفحه 112
شکل (3-140) شکل موجهای ولتاژ) (kV
صفحه 113
شکل (3-141) شکل موجهای جریان (kA)
صفحه 114
شکل (3-142) شکل موجهای جریان (kA)
صفحه 115
شکل (3-143) شکل موجهای جریان (kA)
صفحه 116
شکل (3-144) شکل موجهای جریان (kA)
صفحه 117
شکل (3-145) شبکه 14 باس IEEE
صفحه 118
اصول کلی رادار و عملکرد آن
رادار یک سیستم الکترومغناطیسی است که برای تشخیص و تعیین موقعیت هدفها به کار می رود. این دستگاه بر اساس یک شکل موج خاص به طرف هدف برای مثال یک موج سینوسی با مدولاسیون پالسی(Pulse- Modulated) و تجزیه وتحلیل بازتاب (Echo) آن عمل می کند. رادار به منظور توسعه توانایی حسیهای چندگانه انسانی برای مشاهده محیط اطراف مخصوصاً حس بصری به کار گرفته شده است. ارزش رادار در این نیست که جایگزین چشم شود بلکه ارزش آن در عملیاتی است که با چشم نمی توان انجام داد. رادار نمی تواند جزئیات را مثل چشم مورد بررسی قرار دهد و یا رنگ اجسام را با دقتی که چشم دارد تشخیص داد بلکه با رادار می توان درون محیطی را که برای چشم غیر قابل نفوذ است دید مثل تاریکی، باران، مه، برف و غبار و غیره. مهمترین مزیت رادار، توانایی آن در تعیین فاصله یا حدود هدف می باشد.
یک رادار ساده شامل آنتن فرستنده، آنتن گیرنده و عنصر آشکارساز انرژی یا گیرنده میباشد. آنتن فرستنده پرتوهای الکترومغناطیسی تولید شده توسط نوسانگر (Oscillator) را منتشر می کند. بخشی از سیگنال ارسالی (رفت) به هدف خورده و در جهات مختلف منعکس می گردد. برای رادار انرژی برگشتی در خلاف جهت ارسال مهم است.
آنتن گیرنده انرژی برگشتی را دریافت و به گیرنده می دهد. در گیرنده بر روی انرژی برگشتی عملیاتی، برای تشخیص وجود هدف و تعیین فاصله و سرعت نسبی آن، انجام میشود. فاصله آنتن تا هدف با اندازه گیری زمان رفت و برگشت سیگنال رادار معین میشود. تشخیص جهت، یا موقعیت زاویه ای هدف توسط جهت دریافت موج برگتشی از هدف امکان پذیر است. روش معمول بری مشخص کردن جهت هدف، به کار بردن آنتن با شعاع تشعشعی باریک می باشد. اگر هدف نسبت به رادار دارای سرعت نسبی باشد، تغییر فرکانس حامل موج برگشتی (اثر دوپلر) (Doppler) معیاری از این سرعت نسبی (شعاعی) میباشد که ممکن است برای تشخیص اهداف متحرک از اهداف ساکن به کار برود.در رادارهایی که بطور پیوسته هدف را ردیابی می کنند، سرعت تغییر محل هدف نیز بطور پیوسته آشکار میشود.
تعداد صفحات 58 word
فهرست مطالب:
فصل اول : اصول کلی رادار
مقدمه
اصول کلی رادار و عملکرد آن
فرم ساده معادله رادار
شمای بلوکی رادار و عملکرد آن
فصل دوم : رادار های ردیاب و انواع آنها
ردیابی با رادار
سوئیچ کردن شعاع آنتن (Sequential lobing)
مرور مخروطی (Conical Scan)
مولد باکسار (Boxcar Generator)
زاویه چپ شدگی (Squint angle)
فصل سوم : رادار ردیاب تک پالس
اصول عملکرد رادار ردیاب تک پالس
مقایسه گر دامنه تک پالسی
سیستم ردیابی هایبرید
ردیابی تک پالس با مقایسه گر فاز
فصل چهارم : شبیه سازی رادار مونوپالس
بلوک دیاگرام شبیه سازی رادار مونوپالس
شبیه سازی مسیر هدف
شبیه سازی سیگنال دریافتی
شبیه سازی آنتن منو پالس
شبیه سازی گیرنده مجموع و تفاضل