مطالب این پست : پایان نامه سیستم خنک سازی توربین ها
با فرمت ورد (دانلود متن کامل پایان نامه)
پایان نامه : انتخاب یک سیستم خنک سازی توربین گازیBoris Glezer
راه حل های توربین بهینه سازی شده, سان دیگو, کالیفرنیا, U.S.A
این فصل عمدتاً روی موضوعات انتقال جرم و حرارت تمرکز می یابد چون آنها برای خنک سازی مولفه های دستگاه توربین بکار می روند و انتظار می رود که خواننده با اصول مربوطه در این رشته ها آشنایی داشته باشد. تعدادی از کتابهای فوق العاده (1-7) در بررسی این اصول توصیه می شوند که شامل Streeter، دینامیک ها یا متغیرهای سیال Eckert و Drake، تجزیه و تحلیل انتقال جرم و حرارت، Incropera و Dewitt، اصول انتقال حرارت و جرم, Rohsenow و Hartnett، کتاب دستی انتقال حرارت, Kays، انتقال جرم و حرارت همرفتی, Schliching، تئوری لایه مرزی، و Shapiro، دینامیک ها و ترمودینامیک های جریان سیال تراکم پذیر
وقتی یک منبع جامع اطلاعات موجود باشد. مولف این فصل خواننده را به چنین منبعی ارجاع میدهد؛ با این وجود وقتی داده ها در صفحات یا مقالات گوناگون پخش شده باشند, مولف سعی می کند که این داده ها را در این فصل بطور خلاصه بیان نماید.
a- سرعت صورت
b- بعد خطی در عدد دورانی
منطقه مرجع, منطقه حلقوی مسیر گازAg – سطح خارجی لایه نازک هوا
– عدد شناوری
BR,M- سرعت وزش
CP- حرارت ویژه در فشار ثابت
d-قطر هیدرولیک
e- ارتفاع آشفته ساز
-عدد اکرت
g- شتاب گریز از مرکز
FP= پارامتر جریان برای هوای خنک سازی
G= پارامتر ناهمواری انتقال حرارت
Gr= – عدد گراشوف
h- ضریب انتقال حرارت
ht- ضریب انتقال حرارت افزایش یافته با آشفته سازها
-نسبت شار اندازه حرکت
k- رسانایی حرارتی
-رسانایی حرارتی سیال
L-طول مربع
m-سرعت جریان جرم
mc- سرعت جریان خنک سازی
M= – سرعت رمش
Ma= r/a- عدد mach
rpm وN- سرعت پروانه
NUL= hL/kf- عدد Nusselt
Pr= -عدد pradtl
PR= نسبت فشار کمپرسور
Ps=فشار استاتیک
Pt= فشار کل
Ptin-فشار کل ورودی
Q- سرعت انتقال حرارت-سرعت انتقال انرژی
شار حرارتی
P- شیب بام آشفته ساز
r- وضعیت شعاعی
R- شعاع میانگین, شعاع احتراق ساز (کمبوستور), مقاومت, ثابت گاز
Ri-شعاع موضعی پره
Rt- شعاع نوکم پره
Rh=شعاع توپی یا سر لوله پره
Rel= – عدد رینولرز براساس قطر هیدرولیک
ReL= – عدد رینولرز براساس L
Ro= wb/v- عدد دورانی
Ros= 1/Ro- عدد Rossby
S-فاصله سطح نرمال شده
St- عدد Stanton
t- زمان
Tc- دمای هوای خنک سازی و نیز دمای تخلیه کمپرسور
Tf- دمای فیلم سطح
Tg- دمای گاز
Tgin- دمای گاز ورودی
Tm- دمای فلز, و نیز دمای لایه مخلوط سازی
Tref- دمای مرجع
Tst- دمای استاتیک موضعی
Tu- شدت جریان آشفتگی
– نوسان سرعت محوری محلی
uin- سرعت محوری گاز ورودی
u,r,w- جریان اصلی یا مولفه های سرعت محوری جریان خنک سازی در مسیرهای z, y x
w- پهنا
– زوایه شیب جت فیلم
– زاویه بین جت فیلم و محورهای جریان اصلی
– نسبت حرارتی ویژه
– ضریت جمعی ترسمه یا انبساط حرارتی, همواری سطح
– قابلیت انتشار حرارتی گردابی
– قابلیت انتشار اندازه حرکت گردابی
– تاثیر انتقال حرارت
– تاثیر خنک سازی
n- بارزه حرارتی
– ویسکوزیته گاز مطلق
P- چگالی
– حد تنش گسیختگی
w- فرکانس دورانی
زیر نویس ها
aw- دیوار آدیاباتیک
C- خنک کننده
d- براساس قطر لبه هدایت کننده (سیلندر)
f- فیلم
hc- آبشار گرم
o-کل
tuv-توربین
w-دیوار
– جریان اصلی
خنک سازی توربین بعنوان یک تکنولوژی کلیدی برای توسعه موتورهای توربین گازی
عملکرد یک موتور توربین گازی تا حد زیادی تحت تاثیر دمای ورودی توربین می باشد و افزایش عملکرد قابل توجه را می توان با حداکثر دمای ورودی توربین مجاز بدست آورد. از یک نقطه نظر عملکردی احتراق با دمای ورودی توربین در حدود می تواند یک ایده ال به شمار آید چون هیچ کاری برای کمپرس کردن هوای مورد نیاز برای رقیق کردن محصولات احتراقی به هدر نمی رود. بنابراین روند صنعتی جاری, دمای ورودی توربین را به دمای استوکیو سوخت بخصوص بردی موتورهای نظامی, نزدیکتر می کند. با این وجود دماهای فلز مولفه مجاز نمی تواند از کند. برای کارکردن در دماهای گازی بالای این حد, یک سیستم خنک سازی مولفه بسیار موثر مورد نیاز است. پیشرفت در خنک سازی, یکی از ابزار اصلی برای رسیدن به دماهای ورودی توربین بالاتر میباشد و این امر به عملکرد اصلاح شده و عمر بهبود یافته توربین منتهی می شود. انتقال حرارت یک عامل طراحی مهم برای همه بخش های یک توربین گاز پیشرفته بخصوص در بخش های توربین و کمبوستور می باشد. در بحث وضعیت طراحی خنک سازی مصنوعی بخش داغ، باید به خاطر داشته باشید که طراح توربین مرتباً تحت فشارهای شدید برنامه زمانبدی توسعه, قابلیت پرداخت, دوام و انواع دیگر محدودیت های درون نظامی می باشد و همه اینها قویاً انتخاب یک طرح خنک سازی را تحت تاثیر قرار میدهند.
چالش های خنک سازی برای دماهای گاز در حال افزایش بطور پیوسته و نسبت فشار کمپرسور
پیشرفت در موتورهای توربین گاز دارای توان ویژه بالا و بازده بالای پیشرفته نوعاً با افزایش در دمای عملکرد و کل نسبت فشار کمپرسور ارزیابی می شود. رایجترین موتورهای تک چرخه ای با نسبتهای فشار بالاتر و دماهای گاز افزایش یافته به شکل متناسب می تواند توان بیشتری را با همان اندازه و وزن و بازده سوخت موتور کلی بهتر بدست آورد. موتورهای دارای بهبود دهنده ها از لحاظ ترمودینامیکی از نسبت های فشار بالای کمپرسور, بهره نمی برند. آلیاژهای پیشرفته برای لایه ها نازک توربین می تواند به شکلی ایمن در دماهای فلز کمتر از عمل کرده و آلیاژها برای صفحات و ساختارهای ساکن به محدود می شوند. ولی توربین های گازی مدرن در دماهای ورودی توربین عمل می کنند که در سن بالای این محدوده هاست. همچنین یک تفاوت قابل توجه در دمای عملکردی بین توربین های هواپیمای پیشرفته و توربین های صنعتی وجود دارد. این نتیجه تفاوتهای اصلی در عمر, وزن, کیفیت هوا/ سوخت و محدودیت های مربوط به تابش ها می باشد.
برای موتورهای هوازی پیشرفته, دماهای ورودی پره توربین نزدیک به و نسبت های فشار کمپرسور در حدود 40:1 تبدیل به یک واقعیت شده است. توان ویژه بالا که برای این نوع از موتورها, هدف عمده می باشد, در راستای بهره بالا بدست میآید. چنین شرایط اجرایی بطور ذاتی نیازمند نظارت های مرتب موتور و نظارت پیوسته سلامت می باشد.
برای موتورهای صنعتی, الزامات پیشرو, شامل دوام دراز مدت بدون نظارتهای مرتب و تعمیرات کلی می باشد. نوعاً مولفه های صنعتی اصلی حداقل 30000 ساعت بین تعمیرات دوام می آورند و دارای توان بالقوه برای تعمیر گونه ای هستند که میتوان عمر موتور را تا 100000 ساعت توسعه داد. این با عمر مولفه توربین هواپیما که تنها چند هزار ساعت است مقایسه می شود.
این فاکتور و نیز لازم معمول فشار تخلیه کمپرسور که باید کمتر از فشار منبع سوخت خط لوله گاز موجود باشد, به یک مادی ورودی پره توربین تقریباً بالا منتهی می شود. حد TRIT برای یک توربین
گاز صنعتی پیشرفته در دامنه 1260 تا فرمول توسعه می یابد.
پیشگفتار
الیاف کربن نسل جدیدی از الیاف پر استحکام است . این مواد از پرولیز کنترل شده گونه هایی از الیاف مناسب تهیه می شود؛ به صورتی که بعد از پرولیز حداقل 90 درصد کربن باقی بماند. الیاف کربن نخستین بار در سال 1879 میلادی زمانی که توماس ادیسون از این ماده به عنوان رشته پرمقاومت در ایجاد روشنایی الکتریکی استفاده کرد، پای به عرصه علم وفن آوری گذاشت. با این حال در آغاز دهه 1960 بودکه تولید موفق تجاری الیاف کربن، با اهداف نظامی و به ویژه برای کاربرد در هواپیمای جنگی، آغاز شد. در دهه های اخیر ،الیاف کربن در موارد غیرنظامی بسیاری، همچون هواپیماهای مسافربری و باربری. خودروسازی. ساخت قطعات صنعتی، صنایع پزشکی، صنایع تفریحی-ورزشی وبسیاری موارد دیگر کاربردهای روز افزونی یافته است. الیاف کربن درکامپوزیت های با زمینه سبک مانند انواع رزین ها به کار میرود. کامپوزیت های الیاف کربن در مواردی که استحکام وسختی بالا و به همراه وزن کم و ویژگی های استثنایی مقاومت به خوردگی مدنظر باشند، یگانه گزینه پیش روست. همچنین نگاهی که مقاومت مکانیکی در دمای بالا، خنثی بودن از لحاظ شیمیایی و ویژگی ضربه پذیری بالا نیز انتظار برود، باز هم کامپوزیت های کربنی بهترین گزینه هستند. با توجه به این ویژگی ها ، پهنه گسترده موارد کاربرد این ماده در گستره های گوناگون فن آوری به سادگی قابل تصور است.
میزان تولید الیاف کربن از 1992 تا 1997 رشد200 درصدی در این فاصله 6ساله داشته که خود نشانگر اهمیت تکنولوژی این ماده است.
هم اکنون ایالات متحده آمریکا نزدیک به 60درصد تولید جهانی الیاف کربن را به مصرف می رساند وا ین در حالی است که ژاپن تلاش میکند به میزان مصرفی برابر با50درصد تولیدات جهانی این محصول دست یابد. ژاپن به واسطه شرکت صنتی توری، خود بزرگترین تولید کننده الیافت کربن در جهان است. هم چنین عمده ترین تولید کننده الیاف کربن با استفاده از پیش زمینه قیر، ژاپن است.
پیشگویی برای سال 2013 میلادی..
سال 2013 است خودرویی جدید به نام 100MPG”BLACKBEAUTY” بدلیل این که ضمن دارا بودن بالاترین کارایی به میزان 100 درصد نیز دوستدار محیط زیست شناخته شده طرفداران بسیاری زیادی دارد. این خودرو پس از انقراض نسل خودروهای فولادی با سازه ای تمام کامپوزیت بر پایه کربن متولد شده است. با استفاده از مواد کربنی در ساخت بدنه و سازه های اصلی این خودرو مانند شاسی موتور و سیستم های انتقال نیرو، کاهش وزن به دست آمده موجب مصرف اندک سوخت شده است.
این مواد پیشرفته به همراه اندکی فلزات سبک که عمدتا در اتصالات به کار می روند، اقتصاد خودرو را از لحاظ میزان مصرف سالیانه سوخت با انقلابی عظیم مواجه کرده است. این مواد سبک در فریم شاسی، موتور کاتالیتیک با بازده بالا، در باتری های لیتیمی و موتورهای الکتریکی، پانل های بدنه، مخزن سوخت و مواد پیشرفته نگه دارنده متان که سوخت اصلی خودروست وخلاصه در تمام المان های اصلی که چنین وسیله نقلیه کم مصرف با توانایی های بسیار بالا را می سازد به کار رفته است. پانل های بدنه از کامپوزیت های کربنی به روش SMC با سطوح بسیار صاف وآماده رنگ کاری ساخته شده است. فیبریل های کربنی در اندازه های زیر میکرون با ویژگی هدایت الکتریکی سطح قطعات پانل های بدنه را به سادگی دارای ویژگی الکترو استاتیک می کنند. از سوی دیگر چون کامپوزیت پلیمری تقویت شده با الیاف کربن از نظر شیمیایی خنثی است به تخریب در برابر پرتو فرابنفش حساس نیست در نتیجه پانل های بدنه به هیچ نوع عملیات پایانی نیاز ندارند. بخش های دیگری که زیاد به آن ها توجه نمی شود، مانند در موتور، هوزینگ ها وگیربکس ها تماما از کامپوزیت کربنی به روش قالب گیری تزریقی ساخته شده وجایگزین قطعات سنگین ریخته شده فلزی شده اند. مخزن سوخت کامپوزیت کربنی ساخته شده به روش پیچش الیاف است که مملو از کربن فعال وفیبریل های کربنی است که موجب افزایش قابلیت نگهداری گاز مایع در فشارهای پایین می شود. موتور کاتالیتیک از کاتالیست های پوشش داده شده بر روی کره ها و لوله های ریز شیاردار کربنی که به کربن توخالی معروف هستند ودر واقع نوعی از الیاف کربن سوراخ شده هستند، استفاده میکند. این واحد مرکزی تولید توان الکتریکی که در واقع قلب سیستم به حساب می آید به دلیل استفاده زیاد از فراورده های الیاف کربن قادر است کارایی خودرا در دماهای بسیار بالایی که الزاما در اثر کارکرد موتور پدید می آید به خوبی حفظ کند.این دلیل اصلی بالا بودن غیرمعمول بازده چنین خودرویی است. از سوی دیگر مشکلات مربوط به آن دسته از شکست های قطعات که ناشی از اختلاف در ضرایب انبساط حرارتی در نسل خودروهای فلزی بود به واسطه استفاده از قطعات کامپوزیتی کربنی به طور کامل از بین رفته است. مهندسین مواد بادست کاری در میزان جهت یافتگی الیاف کربن نوع جدیدی از الیاف راساخته اند که به طور استثنایی دارای هدایت حرارتی یک بعدی بسیار زیادی بوده و بدین وسیله توانسته اند دستگاههای سرمازا را با بازده بسیار بالا در موتور این خودرو به کار برند.
در سیستم باتری یونی لیتیم/ لیتیم از آندهای کربنی وکاتدهای کامپوزیت کربنی استفاده شده است.
سیستم جدید تهویه هوا با استفاده از رادیاتورهای پلاستیکی تقویت شده با الیاف کربن، محفظه های کربنی وفوم های کربنی عایق، بیشترین شرایط رفاه وآسایش سرنشین را به همراه حذف کامل گازهای ضدازن فراهم آورده است. سیستم GPS تعبیه شده برای ارتباطات ماهواره ای، تلفن همراه،دستگاه دورنگار و رایانه های on-board همگی ضمن رعایت طراحی ارگونومیک از قاب های کامپوزیت کربنی که هدایت الکتریکی مناسبی دارند بهره می برند.
قراردادن المان های جهت دار کامپوزیتی بر پایه کربن در جهت اعمال لنگر سیستم تعلیق کربنی را در این خودرو به گونه ای ساخته که موجب حذف بسیاری از قطعات سنگین فلزی شده و همین موضوع خود موجب عملکرد بهتر سیستم تعلیق شده است. روتورهای کربنی ترمز و لنت ترمزهای گرافیتی وزن مجموعه سیستم ترمز را در راستای عملکرد بهتر ترمز کاهش داده است. رینگ های تقویت شده با الیاف کربن ضمن کاهش وزن موجب سرد کار کردن مجموعه ترمز و در نتیجه بالاتر رفتن ضریب امنیت ترمز می شود.تایرهای با فرمالاسیون پیشرفته شامل فیبریل های کربن وبلوک های کربنی جهت دار به همراه الیافت کربن بافته شده به صورت شعاعی ضمن سبکی موجب حذف مقاومت غلطشی تایر و سردماندن آنها در طول حرکت می شود. المان های تعلیق رینگهای وتایرهای ساخته شده از الیاف کربن باعث برقراری مطمئن اتصال با زمین و در نتیجه کمینه شدن احتمال آتش سوزی در اثر بارهای الکترواستاتیک وافزایش امنیت وراحتی سرنشین در هنگام سوار وپیاده شدن از خودرو می شود.
با استفاده روز افزون از الیاف کربن در ساخت خودروهای پیشرفته مصرف سالیانه بنزین به سرعت رو به کاهش گذاشته و نیاز به واردات سوخت های فسیلی را که باعث عدم تعادل تجاری می شود به حداقل می رساند. در عوض به منظور گسترش واحدهای تولید مواد کربنی جدید با کاربردهای رو به رشد در ساخت خودروهای کربنی میلیون ها فرصت شغلی در کشور پدیدار می شود.