دانلود تحقیق چرخ دنده و انواع آن و کاربردآنها

دانلود تحقیق چرخ دنده و انواع آن و کاربردآنها

 

 

 

 

 

 

 

 

فرمت فایل:word  (قابل ویرایش)

تعداد صفحات :39

فهرست مطالب :

چرخ دنده:
محور یک چرخ دنده جفت:
زاویه شفت :
نسبت چرخ دنده u (gear ratio): 
نسبت واقعی گشتاور: 
محور غلتشی یا رولینگ : 
پارامترهای وابسته به نقطه هلیکس s :
نقطه کارکرد w (working point):
زاویه فشار نرمال در یک نقطه αyn ،زاویه فشار 
نرمالαn :
نیم زاویه ضخامت دندانه P:
نیم زاویه فضای بین دندانه P: 
زاویه شفت  (angle):
چرخ دنده:
یک چرخ دنده رکن مکانیکال ،قابل گردش در اطراف یک محور بوده ،که شامل یک بدنه اصلی با سطوح مقاوم و دندانه هایی که در بدنه اصلی ایجاد شده می باشد.
سیستم دندانه چرخ دنده:
سیستم دندانه چرخ دنده شامل مجموع تعداد دندانه های یک چرخ دنده است.
دندانه/دندانه 2 و… دندانه k برای طراحی و تعریف دندانه های خاص ،دندانه1،دندانه2 وغیره می بایست علامتی روی صفحه ظاهری مرتبط به سیستم دندانه چرخ دنده متصور نمود. دندانه ها با یک قاعده افزایشی عدد گذاری و شماره گذاری 
می شوند.عموما یک دندانه با علامت اختصاری k معرفی می گردد.بنابر این دندانه بعدی-با قاعده افزایشی عدد گذاری –با k+1 ودندانه قبلی با k-1 معرفی میگردد.
در چرخ دنده جفت با محورهای موازی ().برای توصیف دنده ها صفحات ظاهری-در همان جهت-بررسی می شوند، و معمولا این جهتی است که نیرو به چرخ دنده محرک(driving) منتقل و یا جهت ویژه دیگری تعریف می گردد.در فرم و متد چرخ دنده های جفت با محورهای متقاطع (معمولا جهت دید برای هر دو چرخ دنده به سمت نقطه ای که محورها همدیگر را قطع می کنند می باشد.در کیس چرخ دنده های جفت با محورهای غیر موازی وغیر متقاطع()عموما از صفحات ظاهری برای تعریف و طرح دندانه ها استفاده می گردد .بطوری که تعریف از سمت دوران برای کیس های مرتبط به چرخ دنده محرک ونتیجتاً بصورت کاربردی برای کیسهای مرتبط به چرخ دنده متحرک امکان پذیر می باشد.
فضای بین دو دندانه(tooth spaces)
فضای بین دندانه ها معادل فضای بین چرخ دنده اول و چرخ دنده درگیر-در طول مدت حرکت دورانی آنها می باشد).
پیرامون دسته های عمومی چرخ دنده های جفت:
چرخ دنده جفت
یک چرخ دنده جفت مکانیزم ساده ای متشکل از دو چرخ دنده است.محور چرخ دنده در یک موقعیت تعریف شده نسبت به آن دیگری قرار دارد ودر نتیجه چرخ دنده اول بوسیله حرکت پی در پی و مداوم دندانه ها،حرکت را به چرخ دنده دوم منتقل می کند.
چرخ دنده های با صفحات مفروض دایروی-circular–-(با محورهای متقارن)هم مرکز با محور چرخ دنده –که یک حرکت دورانی یکنواختی را انجام می دهد،می باشد؛چرخ دنده های (غیر دور)یا با صفحات مفروض مختلف مرکز،در انتقال حول حرکت دورانی یک اثر پریودیک مقداری بوجود می آورند.
محور یک چرخ دنده جفت:
فرم وشکل فرض شده در مورد چرخ دنده های جفت و اشکال صفحات مفروض سیستم دندانه چرخ دنده،به موقعیت نسبی محورهای چرخ دنده مربوط است.دو محور چرخ دنده ممکن است در یک سطح یکسان قرار گرفته باشد در این حالت ممکن است آنها موازی یا متقاطع باشند،و یا نتوانند در سطحی یکسان قرار گیرند،و یا یکدیگر را قطع کنند.
فاصله مرکز به مرکز a (جبران کننده-offset): 
فاصله مرکز به مرکز a (centre distance) در یک چرخ دنده جفت با محورهای موازی یا محورهای غیر موازی ویر متقاطع ،کوتاهترین فاصله بین دو محور است.در یک چرخ دنده جفت با محورهای یر موازی و غیر متقاطع ،فاصله مراکز(a) درخط تقاطع قرار گرفته است.
همیشه در یک چرخ دنده جفت هیپوئید(hypoid) -فاصله مراکز بنام جبران کننده یا افست معرفی می گردند.
توجه:در محاسبات یک چرخ دنده جفت داخلی با محورهای موازی،فاصله مراکز مقداری منفی می باشد.
چرخ دنده وچرخ دنده جفت به شکل یک دنده اختیاری(gear and mating gear) 
یکی از دو چرخ دنده- بطور اختیاری-چرخ دنده جفت تعریف وتقریر گردیده وچرخ دنده ای که با آن جفت می گردد،چرخ دنده درگیر تعریف می شود.

پینیون(چرخ دنده کوچک)وچرخ(چرخ دنده بزرگ):
چرخ دنده کوچکتر از یک چرخ دنده جفت،پینیون(pinion) یا چرخ دنده کوچک نامیده و در همان چرخ دنده جفت،چرخ دنده بزرگتر را چرخ (wheel )یا چرخ دنده بزرگ می نامند. دنده کوچکتر با زیرنویس 1 وچرخ دنده بزرگ با زیرنویس 2 نمایش داده می شوند.
در انواع خاص چرخ دنده های جفت،چرخ دنده های کوچک وبزرگ نامهای خاصی دارند(بطور مثال پیچ حلزون وچرخ حلزونworm )

چرخ دنده محرک ومتحرک(driving and driven gear) :
چرخ دنده ای از چرخ دنده جفت که دیگری را حرکت می دهد چرخ دنده محرک (driving gear ) نامیده می شود. وچرخ دنده ای که بوسیله چرخ دنده محرک متحرک می شود، چرخ دنده متحرک (driven gear) نامیده می شود.چرخ دنده محرک با زیرنویس a وچرخ دنده متحرک با زیرنویس b نمایش داده می شود.
چرخ دنده دنبال هم یا رشته ای(gear train): 
چرخ دنده دنبال هم، ترکیبی از دو یا چند چرخ دنده جفت است که بطور مؤثری به دیگر چرخ دنده جفت بعدی وابسته است.



خرید و دانلود دانلود تحقیق چرخ دنده و انواع آن و کاربردآنها


پایان نامه ی بررسی مولکول نگاری پلیمری سنتز و کاربرد آن در استخراج. doc

پایان نامه ی بررسی مولکول نگاری پلیمری سنتز و کاربرد آن در استخراج. doc

 

 

 

 

 

 

 

نوع فایل: word

قابل ویرایش 255 صفحه

 

تئوری قفل و کلید:

مفهوم برهم کنش مولکولی بسیار قدیمی بوده و بوسیله مؤسسات یونانی و ایتالیایی استفاده شده است. در نیمه دوم قرن نوزدهم، ظهور نظریه‌های مدرن در مورد این برهم کنش‌ها از میان آزمایش‌های واندروالس در مطالعاتش پیرامون برهم کنش‌های مابین اتمها در حالت گازی آغاز شد و در سال 1894، فیشر نظریه مشهور «قفل و کلید »اش را در مورد‌روش برهم کنش سوبسترا با آنزیم ارائه‌کرد(شکل‌1-1).

براساس نظریه فوق، عمل خاص یک آنزیم با یک سوبسترا تنها می‌تواند با استفاده از تشبیه قفل به آنزیم و کلید به سوبسترا توضیح داده شود. فقط وقتی که کلید (سوبسترا) اندازه قفل باشد در درون سوراخ قفل (مکان فعال  آنزیم) جای می‌گیرد. کلیدهای کوچکتر، کلیدهای بزرگتر یا کلیدهایی با دندانه‌های نامشابه (مولکولهای سوبسترا با شکل و اندازه نادرست) در داخل قفل (آنزیم) جای نخواهند گرفت

 

فهرست مطالب:

فصل اول – مقدمه

۱-۱- تئوری قفل و کلید

۱-۲- تاریخچه مولکول نگاری

۱-۳- روش های مختلف مولکول نگاری

فصل دوم- اهمیت مولکولهای پذیرنده درعلم و تکنولوژی پیشرفته

۲-۱-مقدمه

۲-۲- پذیرنده های طبیعی

۲-۴- پذیرنده ها برای کاربردهای عملی

۲-۵- چرا روش مولکول نگاری اینقدر امید بخش است؟

مراجع

فصل سوم – اساس مولکول نگاری

۳-۱- مقدمه

۳-۲-ماکرومولکول ها (۱)

۳-۲-۱-ماکرومولکول های سنتزی

I-واکنشهای پلیمریزاسیون

A- پلیمریزاسیون رادیکالی

a- تحریکهای حرارتی

b- فعال کننده‌های فوتوشیمی

c- تشکیل مرحله اولیه بوسیله اجسام مولد رادیکالهای آزاد

:Bپلیمریزاسیون یونی

a- پلیمریزاسیون کاتیونی

-bپلیمریزاسیون آنیونی

g – خاتمه فعالیت با افزایش متوقف کننده ها

۳-۳-تکنیکهای پلیمریزاسیون

۳-۴-قواعد اساسی مولکول نگاری

۳-۵- روش‌های مختلف مولکول نگاری

۳-۶- مزایا و معایب منتقوش پذیری غیر کووالانسی و کووالانسی

مراجع

فصل چهارم – روشهای آزمایشگاهی

فرآیند های مولکول نگاری

۴-۱- مقدمه

۴-۲- واکنشگر ها و فرآیند های آزمایشگاهی

۴-۲-۱- مونومر های عاملی

۴-۲-۲- مولکول الگو

۴-۲-۳- عوامل اتصال دهنده عرضی

۴-۲-۶- تأثیر زمان

۴-۳-منقوش پذیری کووالانسی

۴-۳-۱- منقوش پذیری به وسیله استر های برونیک اسید

۴-۳-۳- منقوش پذیری با استالهاو کتالها

۴-۳-۴- منقوش پذیری با بازهای شیف

۴-۳-۵- منقوش پذیری با پیوندهای S-S

4-3-6- منقوش پذیری با پیوندهای کئوردینه شده

۴-۴- منقوش پذیری غیر کووالانسی

۴-۵- مولکول نگاری تصنعی

مراجع

فصل پنجم – روشهای تجربی درارزیابی کارآیی منقوش پذیری

۵-۱- مقدمه

۵-۲- آزمایشات کروماتوگرافی

۵-۳- آزمایشات پیوند الگو به روش نا پیوسته

۵-۴- تعیین ثابت اتصال الگو

مراجع

فصل ششم – مطالعه اسپکتروسکوپی واکنشهای مولکول نگاری

۶-۱-مقدمه

۶-۲-ساختار کمپلکس در مرحله پیش پلیمریزاسیون

۶-۳-بررسی برهمکنش های الگو- مونومر توسط روش های اسپکتروسکوپی

۶-۴-بررسی برهمکنش های الگو-  MIP

6-6- رابطه بین میزان K و کارایی مولکول نگاری

۶-۷ – ساختار سایت اتصال مولکول الگو

مراجع

فصل هفتم – شمایی از روش مولکول نگاری

۷-۱- مقدمه

۷-۲- انتخاب عوامل

۷-۲-۱- مونومرهای عاملی

۷-۲-۲-حلال پلیمریزاسیون

۷-۲-۳- عامل اتصال دهنده عرضی

۷-۳- پلیمریزاسیون

۷-۴ پرکردن ستون HPLC با پلیمر منقوش

۷-۵- ارزیابی کمی کارایی منقوش پذیری

مراجع

فصل هشتم- کاربرد های مولکول نگاری

۸-۱- کاربرد های مولکول نگاری

۸-۱-۲- تقلید گر های باند پادتن و پذیرنده

۸-۱-۳- کاربرد های کاتالیستی و آنزیمی

۸-۱-۴- حسگر های زیستی

۸-۱-۶- پلیمر های منقوش پذیر به عنوان غشاء های سلولی

۸-۱-۷- کاربرد مولکول نگاری در جذب انتخابی یون ها

۸-۱-۸- پلیمر های منقوش پذیر برای تغلیظ انتخابی یون ها

۸-۱-۹- کاربرد پلیمر های منقوش پذیر در جداسازی پپتیدها

۸-۲- مروری کلی بر کارهای انجام شده به روش مولکول نگاری

مراجع

فصل نهم – چالش ها و پیشرفت های اخیر

۹-۱- مقدمه

۹ -۲- مولکول نگاری در آب

۹ – ۳- استفاده از دو نوع مونومر عاملی برای شناسائی مشترک

۹-۴- ژل معدنی به عنوان بستری برای مولکول نگاری

۹-۴-۱- منقوش پذیری کووالانسی در ماتریس سیلیکا ژل

۹-۴-۲- فیلم فوق نازک TiO2 به عنوان ماتریس برای فرایند منقوش پذیری (۱۵و۱۶)

۹-۴-۳- سیلیکا ژل مارپیچ برای تکنیک مولکول نگاری (۱۷)

۹-۵- آنزیم های مصنوعی (کاتالیزور مولکولی ) برای تکنیک مولکول نگاری

۹-۵-۱- ترکیب سایت های کاتالیزوری و سایت های اتصال سابستریت

۹-۵-۲- پادتن کاتالیزی تهیه شده با استفاده از مرحله گذار آنالوگ

مثال ۹-۳: پادتن کاتالیزی به عنوان یک استرس مصنوعی

مراجع

 

منابع و مأخذ:

1- www.elmhurst.edu/~chm/vchembook/571lockkey.html

2- www.smi.tu-berlin.de/story/intro.htm

3- L. Pauling, JACS, 1940, 62, 2643.

4- G. Wulff. R. Grobe-Einsler, A. Sarhan, Makromol. Chem., 1977, 178, 2817.

5- K. J. Shea, T. K. Doughertly, J. Am. Chem. Soc., 1986, 108, 1091.

6-R. Arshady, K. Mosbach, Macromol. Chem., 1981, 182, 687.

7- G. Vlatakis, L I. Andersson, R. Muller. K. Mosbach, Nature. 1993, 361, 645.

8- M. J. Whitcombe, M. E. Rodriguez, P. Villar, E. N. VulfsonJ. Am. Chem. Soc., 1995, 117, 7105.

 

1-         L Stryer, Biochemistry, 3rd edn, W. H. Freeman and Co., New York, 1988.

2-         J.-M. Lehn, Supramolecular Chemistry. VCH, Weinheim. 1995.

3-         Rebek, J. Jr et a\.,J. Am. Chem. Soc. 1987, 109, 5033.

4-         (a) D. B. Amabilino, J. F. Stoddart, Chem. Rev. 1995. 95, 2725. (b) T. R. Kelly. H. Silva, R. A. Silva, Nature 1999, 402, 150. (c) N. Koumura, R. W. J. Zijlstra, R. A. Delden, N. Harada. B. L Feringa, Nature 1999, 40J, 152. (d) H. Shigekawa, K. Miyake, J. Sumaoka, A. Harada, M. Komiyama, J. Am. Chem. Soc. 2000, 122, 5411.

5-         H. Asanuma, T. Hishiya, M. Komiyama, Adv. Mater. 2000, 12, 1019.

 

1-         سنتز پلیمر، پول رمپ و ادوارد مویل، ترجمه دکتر غلامحسین ظهوری انتشارات دانشگاه فردوسی مشهد، نشر رز، 1377

2-         Molecular imprinting, M. Komiyama, et al. Wiley-vch, 2003

3-         L. Wu and Y. Li, Anal. Chim. Acta, 482 (2003) 175

4-         P. Turkewitsch, B. Wandelt, G. D. Darling, and W. S. Powell, Anal. Chem., 70 (1998) 2025.

5-         K. Haupt and K. Mosbach, Chem. Rev., 100 ( 2000) 2495.

 

1-         P. A. G. Cormack and A. Z. Elorza, J. Chromatography B, 804 (2004) 173.

2-         1 G. Wulff. W. Vesper. R. Grobe-Einsler, A. Sarhan, Makromol. Chem., 178, 2799 (1977).

3-         A. Kugimiya, J. Matsui, T. Takeuchi. K.Yano, H. Muguruma, A. V. Elgers-ma, I. Karube, Anal. Lett., 28, 2317 (1995).

4-         M.J. Whitcombe, M. E. Rodriguez, P. Villar. E. N. Vulfion.J. Am. Chem. Soc., 117, 7105 (1995).

5-         G. Wulff, J. Vietmeier, Makromol. Chem., 190,1717 (1989).

6-         T. Mukawa, T. Goto, H. Nariai, Y. Aoki, A. Imamura, T. Takeuchi, J. Pharm. Biomed. Anal., in press.

7-         T. Takeuchi, T. Mukawa, J. Matsui, M. Higashi, K. D. Shimizu, Anal. Chem., 73, 3869 (2001).

8-         J. Matsui, I. A. Nicholls. I. Karube, K. MosbachJ. Org. Chem., 61, 5414 (1996).

9-         K. Haupt, A. Dzgoev, K. Mosbach, Anal. Chem., 70. 628 (1998).

10-       K. Tanabe, T. Takeuchi, J. Matsui, K. Ikebukuro. K. Yano, I. Karube, J. Chem. Soc. Chem. Commun., 1995, 2303.

11-       P. Turkewitsch, B. Wandelt, G. D. Darling, W. S. Powell. Anal. Chem.. 70, 2025 (1998).

12-       J. Matsui, K. Fujiwara, T.Takeuchi, Anal. Chem., 72,1810 (2000).

 

D. Spivak et al.,J. Am. Chcm. Soc. 1997,119, 4388-4393.H. Asanuma et al., Anal. Chim. Acta. 2001,435, 25-33.

 

1-K. Karim, F. Breton, R. Rouillon, E. V. Piletska, A. Gueerreiro, I. Chianella, S. A. Piletsky, Advanced drug Delivery Reviews 57 (2005) 1795-1805.

2- B. Sellegren, et al., J. Am. Chem. Soc., 1988, 1 JO, 5853-5860.

3- H. Asanuma et al., Supremo/. Sci., 1998,5,41721.

4- Takeuchi et al.,y. Chcm. Soc. Chem. Commun. 1995, 2303-2304.

5- D. f. Duffy et al., Polym. Mater. Sri. Eng., 2000, 82. 69-70.

6- D. Y. Sasaki et al., Chem. Mater. 2000, 12, 1400-1407.

7-. Matsui et al.. Anal. Chem., 1995. 67, 4404-4408.

8- H. Asanuma, T. Hishiya, M. Komiyama, Adv. Mater., 2000, 12, 1019-1030.

9- H. Hishiya, H. Acanuma, M. Komiyama, J. Am. Chem. Soc., 2002, 124, 570-575.

 

1- J. Matsui etal., Anal. Chem. 1995, 67, 4404- 4408.

 

 

Ensing, K., Berggren, C., Majors, R. E., LCGC, 19 (2001) 9-16.Kempe, M., Anal. Chem., 68 (1996) 1948-1953.Fujimoto, Ch., Anal. Sci., 18 (2002) 19-25.Andersson, L. I., J. Chromat. B, 745 (2000) 3-13.Yoshikawa, M., Yonetani, K., Desalination, 149 (2002) 287-292.Huang X., Zou, H., Chen, X., Luo, Q., Kong., J. Chromat. A, 984 (2003) 273-282 .Lai, E., Future drug Discovery, 2002, 92-95.Zhu, L., Xu, X., J.Chromat. A, 991 (2003) 151-158.Kriz, D., Ramstrom, O., Mosbach, K., Anal. Chem., 69 (1997) 349.Piletsky, S. A., Piletska, E. V., Bossi, B., Karim, K., Lowe, P., Turner, A. P. F., Biosensors & Bioelectronics, 16 (2001) 701-707.Taba, M., Lwasawa, Y., J. Mole. Catal. A: Chem.,

         199(2003), 115-137.

Batra, D., Shea, K. J. Cur. Opin Che.Bio., 7 (2003) 434-442.Boer, T. de., Selectivity Enhancement in Capillary Electrokinetic Separations via chiral and Molecular Recognition, Enschede, 2001.Alexander, C., Davidson, L., Hayes, W., Tetrahedron, 59 (2003) 2025-2057.Bradley, R., Shea, J., J. Am. Chem. Soc., 123 (2001) 2072-2073.Mathew- Krotz, J., J. Am. Chem. Soc., 118 (1996) 8154-8155.Ramstrom, O., Nicholls, I.A. and Mosbach, K., Tetrahedron Asymmetry, 5 (1994) 649-656.Yano, K. Nakagiri, T., Takeuchi, T., Matsui, J., Ikebukuro, K. and Karube, I., Anal. Chim. Acta, 357 (1997) 91-98.B. A. Rashid, R. J. Briggs, J. N. Hay, and D. Stevenson,Commun., 34 (1997) 303.M. Walshe, J. Howarth, M. T. Kelly, R. Okennedy and M. R. Smyth, J. Pharm. Biomed. Anal., 16 (1997) 319.A. Zander, P. Findlay, T. Penner, B. Sellergren and A. Swietlow, Anal. Chem., 70 (1998) 3304.W. M. Mullett and E. P. C. Lai,Anal. Chem.70(1998) 3636.C. Baggiani, G. Giraudi, C. Giovannoli, A. Vanni and F. Trotta, Anal. Commun., 36 (1999) 263.W. M. Mullett, and E. P. C. Lai B. Sellergren, Anal. Commun. 36 (1999) 217.J. Olsen, P. Martin, I. D. Wilson and G. R. Jones, Analyst,

       124 (1999) 467.

W. M. Mullett and E.P.C.Lai,Microchem. J., 61 (1999) 143.W. M. Mullett and E. P. C. Lai, J. Pharm. Biomed. Anal.

       21 (1999) 835.

A. Kugimiya and T. Takeuchi, Anal. Chim. Acta, 395

        (1999) 251.

B. Bjarnason, L. Chimuka and O. Ramstroen, Anal. Chem.,

       71 (1999) 2152.

C. Berggren, S. Bayoudlay, D. Sherrington and K. Ensing, J. Chromatogr. A, 889 (2000)105.L. I. Anderson, Analyst, 125 (2000) 1515.P. Martin, I. D. Wilson and G. R. Jones, J. Chromatogr. A,

       889 (2000) 143.

P. Martin, I. D. Wilson and G. R. Jones, Chromatographia,

       25 (2000) s19.

W. M. Mullett, M. F. Dirie, E. P. C. Lai, H. Guo and X. he, Anal. Chim Acta, 414 (2000) 123.J. Matsui, K. fujiwara, S. Ugata and T. Takeuchi, J. Chromatogr. A, 889 (2000) 25.I. Ferrer, F. Lanza, A. Tolokan, V. sellergren, G. Horvai and D. Barcelo, Anal. Chem. 72 (2000) 3934.N. Masque, R. M. Marce, F. Borrull, P. A. G. Cormack and D. C. sherrington, Anal. Chem. 72 (2000) 4122.M.Zi-Hui andL. Qin, Anal. Chim. Acta, 435 (2001) 121.K.Adbo and I.A.Nicholls,Anal. Chim. Acta, 435(2001) 115.G. Brambilla, M. Fiori , B. Rizzo, V. Crescenzi and G. Masci, J. Chromatogr. B, 759 (2001) 27.T.Pap, V. Horvath, A. Tolokan, G. Horvai, B. Sellergren, J. Chromatogr. A, 973 (2002) 1.G. Theodoridis, A. Kantifes, P. Manesiotis, N. Raikos and H.Tsoukali-Papadopoulou,J.Chromatogr.A, 987 (2003) 103.R. Say, E. Birlik, A. Ersoz, F. Yilmaz, T. Gedikbey and A. Denizli, Anal. Chim. Acta, 480 (2003) 251.V. M. Biju, J. M. Gladis and T. P. Rao, Anal. Chim. Acta,

       478 (2003) 43.

E. Caro, R. M. Marce, P. A. G. Cormack, D. C. Sherrington

       and F. Borrull, J. Chromatogr. A, 995 (2003) 233.

G. Theodoridis, C. K. Zacharis, P. D. Tzanavaras, D. G. Themelis and A. Economou, J. Chromatogr. A, 1030 (2004) 69.F. Chapuis, V. Pichon, F. Lanza, B. Sellergren and M. C. Hennion, J. Chromatogr. B, 804 (2004) 93.R. Kala, J. M. Gladis and T. P. Rao, Anal. Chim. Acta, 518

       (2004) 143.

P. D. Martin, G. R. Jones, F. Stringer and I. D. Wilson, J. Pharmaceutical and Biomedical Analysis, 35 (2004) 1231.X. Dong, N. Wang, S. Wang, X. Zhang and Z. Fan, J. Chromatogr. A, 1057 (2004) 13.L. I. Andersson., E. Hardenborg, M. Sandberg-Stall, K. Moller, J. Henriksson, I. Bramsby-Sjostrom, L. Olsson and M. AbdeRehim, Anal. Chim. Acta 526 (2004) 147.E. Caro, R. M. Marce, P. A.G. Cormack, D. C. Sherrington and F. Borrull, J. Chromatogr. B, 813 (2004) 137.S. Hu, L. Li and X. He, J. Chromatogr. A, 1062 (2005) 31.S. Hu, L. Li and X. He, Anal. Chim. Acta, 537 (2005) 215.X. Zhu, J. Yang, Q. Su, J Cai and Y. Gao, J. Chromatogr. A, 1092 (2005) 161.S. Daniel, P. E. J. Babu and T. P. Rao, Talanta, 65 (2005)M. Khajeh et al. Anal. Chim. Acta, 581 (2007) 208

 

Allender, C.J.; Brain, K.R.; Heard, C.M. «Progress in Medicinal Chemistry», P.235, Elsevier Science, Oxford (1999).Bender, M. L.; Komiyama, M.« Cyclodextrin Chemistry», springer- verlag, Berlin (1978).Asanuma, H.; Akiyama, T.; Kajiya, K.; Hishiya, T.; Komiyama, M. Anal. Chim. Acta., 2001, 435, 25-33.Akiyama, T.; Hishiya, T.; Asanuma, H.; Komiyama, M. J. Inclu. Phenom. Macrocyclic Chemistry, 2001, 41, 149-153.Hart, B.R.; Shea, K.J.J.Am. Chem. Soc., 2001, 123, 2072-2073.Kurihara, K.; Ohto, K.; Honda, Y.; Kunitake, T.J.Am. Chem. Soc. 1991, 113, 5077-5079.Matsumoto, J.; Ijiro, K.; Shimomura, M. Chem.Lett., 2000, 1280-1281.Ijiro, K.; Matsumoto, J.; Shimomura, M. Studies in Surface Science and Catalysis, 2001, 132, 481-484.Takeuchi, T.; Mukawa T.; Matsui, J.; Higashi, M.; Shimizu, K.D. Anal. Chem. 2001, 73, 3869- 3874.Matsui, J.; Higashi, M.; Takeuchi, T.J.Am. Chem. Soc. 2000, 122, 5218-5219.Dickey, F.H. Proc. Natl. Acad. Sci, 1949, 35, 227-229.Morihara, K.; Takiguchi, M.; Shimada, T. Bull. Chem. Soc.Jpn. 1994, 67,1078-1084.Wulff, G.Angew. Chem. Int. Ed. Engl. 1995, 34, 1812-1832.Katz, A.; Davis, M.E. Nature, 2000, 403, 286-289.Lee. S-W,; Ichinose, I.; Kunitake, T. Langmuir, 1998, 14,2857-2863.Ichinose, I.; Kikuchi, T.; Lee, S.W.; Kunitake, T. Chem. Lett. 2002. 104-105.Jung, H.J.; Ono, Y.; Shinkai, S. Chem. Eur.J.2000, 6, 4552-4557.Takeuchi, T.; Fukuma, D.; Matsui, J.; Mukawa, T.Chem. Lett.2001, 530-531.Matsui, J.; Miyoshi, Y.; Doblhoff Dier, O.; Takeuchi, T. Anal. Chem. 1995, 67, 4404-4408.Pauling, L. Am. Sci. 1948, 36,51.Lerner, R.A.; Benkovic, S.J.; Schultz, P.G. Science, 1991, 252, 659-667.Matsui, J.; Nicholls, I.A.; Karube, I.; Mosbach, K.J. org. Chem. 1996.61, 5414-5417.Morihara, K.; Kurihara, S.; Suzuki, J. Bull. Chem. Soc. Jpn. 1988, 61, 3991-3998.Kawanami, Y.; Yunoki, T.; Nakamura, A.; Fujii, K.; Umano, K.; Yamauchi, H.; Masuda, K. J. Mol. Catal. A 1999, 145,107-110.Markowitz, M.A.; Kust, P.R.; Deng, G.; Schoen, P.E.; Dordick, J.s.; Clark, D.S.; Gaber, B.P. Langmuir, 2000, 16, 1759-1765.Wulff G.; Gross T.; Schonfeld, R. Angew. Chem. Int. Ed. Engl. 1997, 36, 1962-1964.

خرید و دانلود پایان نامه ی بررسی مولکول نگاری پلیمری سنتز و کاربرد آن در استخراج. doc


پاورپوینت ارزیابی نانو تکنولوژی در علوم مختلف

پاورپوینت ارزیابی  نانو تکنولوژی در علوم مختلف

فرمت فایل:power point(قابل ویرایش)

نانوفناوری در تعریف بسیار ساده، یعنی تکنولوژی هایی که در ابعاد نانومتر عمل می کنند. نانومتر واحد اندازه گیری است و برابر با 9^10 یک میلیاردم متر یا متر است. اندازه اتم ها و مولکول ها در این محدوده قرار دارد. نانوفناوری که از دو کلمه «نانو» و «فناوری» تشکیل شده است به معنای توسعه، ساخت، طراحی و استفاده از محصولاتی است که اندازه آنها یک تا صد نانومتر قرار دارند.

 



خرید و دانلود پاورپوینت ارزیابی  نانو تکنولوژی در علوم مختلف


مقاله کاربرد مواد پلیمری در بتن – مهندسی عمران

توضیحات :

کاربرد مواد پلیمری در قرن حاضر به سرعت در رشته‌های مختلف صنایع و از جمله صنایع ساختمانی در حال گسترش می‌باشد، یک کاربرد جدید و موفق از این مواد، ساخت بتن‌های پلیمری است. بتن‌های پلیمری، مخلوطی از حدود 80 تا 95 درصد پرکننده‌های معدنی (و گاهی آلی) در 5 تا 20 درصد بایندرهای پلیمری مییباشند. این بتن‌ها نسبت به بتن‌های رایج سیمانی مزایا و خواص برتری داشته (و در برخی موارد دارای خواصی منحصر به فرد می‌باشند) و همین مزایا و خواص برتر است که علیرغم قیمت بالاتر آنها، نسبت به بتن‌های سیمانی، آنها را مورد استقبال روزافزون صنعتی قرار می‌دهد.

 

فهرست مطالب :

مقدمهبتن گوگردیبتن انعطاف پذیربتن سبکنوآوری های قرن 21 در ساخت بتن های پیش ساختهافزودن فیبر به بتناستفاده از لاستیک های فرسوده در بتن

 

♦ این مقاله با فرمت Word و در 16 صفحه ارائه شده است.



خرید و دانلود مقاله کاربرد مواد پلیمری در بتن – مهندسی عمران


پایان نامه کاربرد الگوریتم ژنتیک در برنامه ریزی فرآیند به کمک کامپیوتر(CAPP) در محیطهای صنعتی مخت

پایان نامه کاربرد الگوریتم ژنتیک در برنامه ریزی فرآیند به کمک کامپیوتر(CAPP) در محیطهای صنعتی مخت

پایان نامه کاربرد الگوریتم ژنتیک در برنامه ریزی فرآیند به کمک کامپیوتر(CAPP) در محیطهای صنعتی مخت

 

تعداد صفحات:104

فرمت فایل:doc

 

چکیده

 

در یک محیط صنعتی توزیع شده، کارخانه های مختلف و دارای ماشین ها و ابزارهای گوناگون در مکان های جغرافیایی مختلف غالبا به منظور رسیدن به بالاترین کارایی تولید ترکیب می شوند. در زمان تولید قطعات و محصولات مختلف ، طرح های فرایند مورد قبول توسط کارخانه های موجود تولید می شود. این طرحها شامل نوع ماشین، تجهیز و ابزار برای هر فرآیند عملیاتی لازم برای تولید قطعه است. طرح های فرایند ممکن است به دلیل تفاوت محدودیت های منابع متفاوت باشند. بنابراین به دست آوردن طرح فرایند بهینه یا نزدیک به بهینه مهم به نظر می رسد. به عبارت دیگر تعیین اینکه هر محصول درکدام کارخانه و با کدام ماشین آلات و ابزار تولید گردد امری لازم و ضروری می باشد. به همین منظور می بایست از بین طرحهای مختلف طرحی را انتخاب کرد که در عین ممکن بودن هزینه تولید محصولات را نیز کمینه سازد. در این تحقیق  یک الگوریتم ژنتیک معرفی می شود که بر طبق ضوابط از پیش تعیین شده مانند مینیمم سازی زمان فرایند می تواند به سرعت طرح فرایند بهینه را برای یک سیستم تولیدی واحد و همچنین یک سیستم تولیدی توزیع شده جستجو می کند. با استفاده از الگوریتم ژنتیک، برنامه ریزی فرآیند به کمک کامپیوتر (CAPP) می تواند براساس معیار در نظر گرفته شده طرح های فرایند بهینه یا نزدیک به بهینه ایجاد کند، بررسی های موردی به طور آشکار امکان عملی شدن و استحکام روش را نشان می دهند. این کار با استفاده از الگوریتم ژنتیک در CAPP هم در سیستمهای تولیدی توزیع شده و هم واحد صورت می گیرد. بررسی های موردی نشان می دهد که این روش شبیه یا بهتر از برنامه ریزی فرآیند به کمک کامپیوتر (CAPP) مرسوم تک کارخانه ای است

 


فهرست مطالب

 

عنوان

صفحه

مقدمه ..........................................................................................................................................................................

11

فصل یکم -  معرفی برنامه ریزی فرآیند به کمک کامپیوتر(CAPP) و الگوریتم ژنتیک ..............................................

17

1-1-  برنامه ریزی فرآیند به کمک کامپیوتر................................................................................................................

17

1-1-1- رویکرد بنیادی ..............................................................................................................................................

18

1-1-2- رویکرد متنوع ...............................................................................................................................................

18

1-2- الگوریتم ژنتیک.................................................................................................................................................

20

1-2-1-کلیات الگوریتم ژنتیک..................................................................................................................................

21

1-2-2-قسمت های مهم الگوریتم ژنتیک....................................................................................................................

23

1-2-2-1-تابع هدف و تابع برازش..............................................................................................................................

26

1-2-2-2- انتخاب......................................................................................................................................................

27

1-2-2-3- تقاطع......................................................................................................................................................... 

28

1-2-2-4- جهش........................................................................................................................................................

32

فصل دوم- نمونه هایی از کاربرد الگوریتم ژنتیک در برنامه ریزی فرآیند به کمک کامپیوتر.........................................

34

2-1-بهینه سازی مسیر فرآیند با استفاده از الگوریتم ژنتیک...........................................................................................

34

2-1-1- توصیف توالی فرآیند.....................................................................................................................................

34

2-1-2- استراتژی کد گزاری.....................................................................................................................................

37

2-1-3- تجزیه و تحلیل همگرایی................................................................................................................................

38

2-1-3-1-همگرایی نزدیک شونده..............................................................................................................................

38

2-1-3-2-همگرایی با در نظر گرفتن احتمال................................................................................................................

40

2-1-3-3-همگرایی GAها در توالی سازی فرایندهای پشت سر هم.............................................................................

40

2-1-3-4-تعریف یک قانون.......................................................................................................................................

41

2-1-4-اپراتورهای ژنتیک...........................................................................................................................................

41

2-1-4-1-اپراتور انتخاب............................................................................................................................................

41

2-1-4-2- اپراتور تغییر و انتقال...................................................................................................................................

42

2-1-4-3- اپراتور جهش............................................................................................................................................

44

2-1-5- برقراری تابع تناسب.......................................................................................................................................

44

2-1-5-1- آنالیز محدودیت ها..................................................................................................................................

   44

2-1-5-2- برقراری تابع برازش...................................................................................................................................

45

2-1-6-مثال................................................................................................................................................................

47

2-1-6-1-مثالهایی برای کاربرد این روشها .................................................................................................................

47

2-1-6-2-تاثیر پارامترهای متغیر بر روند تحقیقات ......................................................................................................

49

2-1-7-نتیجه گیری...................................................................................................................................................

50

2-2-روشی برای برنامه ریزی  مقدماتی ترکیبات دورانی شکل محور Cاستفاده از الگوریتم ژنتیک.........................

51

2-2-1-مقدمه.............................................................................................................................................................

51

2-2-2-مدول های سیستمCAPP  پیشنهاد شده........................................................................................................

54

2-2-3-تجسم قطعه...................................................................................................................................................

56

2-2-4-تولید توالی های ممکن..................................................................................................................................

58

2-2-4-1-الزامات اولویت دار..................................................................................................................................

58

2-2-4-2- الزامات تلرانس هندسی.............................................................................................................................

59

2-2-4-3- رابطه ویژگی های اولویت دار....................................................................................................................

60

2-2-5 بهینه سازی با استفاده از الگوریتم ژنتیک GA..................................................................................................

64

2-2-5-1- تابع برازش...............................................................................................................................................

67

2-2-5-2- الگوریتم ژنتیک......................... .............................................................................................................

68

2-2-6- نتایج و بحث...............................................................................................................................................

71

2-2-7-نتیجه گیری...................................................................................................................................................

71

فصل سوم: الگوریتم پیشنهادی برای کاربرد الگوریتم  ژنتیک در طراحی قطعه به کمک کامپیوتر در محیط صنعتی .....

73

3-1-مقدمه................................................................................................................................................................

73

3-2-الگوریتم ژنتیک................................................................................................................................................

74

3-2-1-سیستم های تولیدی توزیع شده........................................................................................................................

74

3-2-2-نمایش طرح های فرایند...................................................................................................................................

75

3-2-3-جمعیت اولیه..................................................................................................................................................

76

3-3-تولید مثل..........................................................................................................................................................

76

3-3-1-ادغام...........................................................................................................................................................

76

3-3-2-دگرگونی و جهش.......................................................................................................................................

77

3-4- ارزیابی کروموزوم ...........................................................................................................................................

80

3-4-1- مینیمم سازی زمان فرایند................................................................................................................................

80

3-4-2- مینیمم سازی هزینه های تولید.........................................................................................................................

80

3-5- مطالعات موردی...............................................................................................................................................

81

3-5-1- CAPPسنتی................................................................................................................................................

81

3-5-2- CAPP توزیع شده.......................................................................................................................................

85

3-6- ارزیابی..............................................................................................................................................................

88

3-6-1- معیار اول.......................................................................................................................................................

88

3-6-2- معیار دوم.......................................................................................................................................................

89

فصل چهارم -نتیجه گیری....................................................................................................................................

90

 

مقدمه

در جهان صنعتی امروز، به تولید به عنوان یک سلاح رقابتی نگریسته می شود و سازمانهای تولیدی در محیطی قرار گرفته اند که از ویژگی های آن می توان به افزایش فشارهای رقابتی، تنوع در محصولات، تغییر در انتظارات اجتماعی و افزایش سطح توقع مشتریان اشاره کرد. محصولات در حالی که باید بسیار کیفی باشند، تنها زمان کوتاهی در بازار می مانند و باید جای خود را به محصولاتی بدهند که با آخرین ذائقه، سلیقه و یا نیاز مشتریان سازگار هستند. بی توجهی به خواست مشتری و یا قصور در تحویل به موقع ممکن است بسیار گران تمام شود. شرایط فوق سبب گردیده تا موضوع اطلاعات برای سازمانهای تولیدی از اهمیت زیادی برخوردار شود. از طرف دیگر، آخرین بررسی ها حاکی از آن است که استراتژی رقابتی مبتنی بر بازار خود نیز به تدریج در حال گذر است و چشم انداز استراتژیک رقابت در آینده مبتنی بر منابع خواهد بود. به عبارت دیگر در حالی که شرکتها امروزه موفقیت را در تبعیت و استفاده درست از قوانین، فرصتها و شرایط دیکته شده توسط بازار می دانند، استراتژی مبتنی بر منابع بر این موضوع تاکید دارد که منفعت و موفقیت بیشتر با اتکا بر مزیتها و منابع منحصر به فرد و قابل اطمینان شرکت و سرمایه گذاری به منظور توسعه و حفاظت از آنها حاصل خواهد شد.

البته منابع تولیدی مورد نظر تنها شامل سرمایه، زمین، ماشین آلات و تجهیزات نمی شوند، بلکه بنای تولید نسل آینده بر تاکید و توجه به اطلاعات، مدیریت دانش و توجه ویژه به مسئله آموزش افراد خواهد بود.

وضعیت به وجود آمده و تحولات صورت گرفته مذکور در حوزه فعالیتهای تولیدی، اگرچه خود حاصل به کارگیری گسترده و همه جانبه فناوریهای اطلاعاتی در این حوزه است، ولی در عین حال باعث توجه مضاعف سازمانها و شرکتهای تولیدی به مقوله اطلاعات و فناوریهای مرتبط با آن شده است. این تحقیق با هدف تبیین موضوع فوق به طور عام و تبیین بخش خاصی از آن به نام برنامه ریزی فرایند به کمک کامپیوتر صورت گرفته است. اهمیت این بررسی از آنجا ناشی می شود که چند سالی است در کشور، افزایش تعداد واحدهای تولیدی و به تبع آن تحقق نسبی فضای رقابتی باعث گردیده تا توجه تولیدکنندگان و شرکتهای صنعتی به کیفیت محصولات، افزایش سهم بازار و مسئله صادرات معطوف گردد. از همین رو به نظر مــی رسد دانستن تحولات صورت گرفته در بخشهای تولیدی جوامع پیشرفته می تواند در تعیین و شناخت بهتر مسیری که سازمانهای تولیدی و صنعتی کشور برای ارتقای توان رقابتی خود باید طی کنند موثر واقع شود. توسعــه های اخیر در حوزه فناوری اطلاعات به ویژه هوش مصنوعی و سیستم های خبره، وضعیت تولید در جوامع صنعتی را دگرگون ساخته است.



خرید و دانلود پایان نامه کاربرد الگوریتم ژنتیک در برنامه ریزی فرآیند به کمک کامپیوتر(CAPP) در محیطهای صنعتی مخت