پروژه کارآموزی - نیروگاه نکاء

پروژه کارآموزی - نیروگاه نکاء

لینک دانلود "  MIMI file " پایین همین صفحه 

تعداد صفحات " 70 "

فرمت فایل : "  word  "

فهرست مطالب :

پیشگفتار

مقدمه

نیروگاه شهید سلیمی

سوخت مصرفی

آب مصرفی

دیگ بخار ( بویلر )

توربین

ژنراتور

پست فشار قوی

مشخصات سایر قسمتها به اختصار

روند حرارت دهی و بدست آوردن بخار سوپرهیت

سیکل نیروگاه و نمودار درجه حرارت انتروپی (T – S )

بلوک دیاگرام مسیر بسته آب و بخار

سیستم آب تغذیه بویلر

سیستم بویلر (کوره احتراق )

سیستم توربین و بخار

سیستم آب‌کندانسیت

سیستم بخارهای استراکشن

سیستم تخلیه‌ها و درین‌ها

نقشه‌ها

 

بخشی از  فایل  :

پیشگفتار

 

مطالبی که در این گزارش بیان شده گوشه‌ای بسیار کوچک از قسمتهای مختلف نیروگاه عظیم نکاء می‌باشد. که سعی کرده‌ام عمده موارد مهم و کاربردی که در یک نگاه و بطور مختصر مورد نیاز خواهد شد را بیان کنم.

 

در جزوه حاضر سیکل نیروگاه و نقشه‌هایی جامعیت داشته و خلاصه‌ای از قسمتهای اصلی نیروگاه که نقش کلیدی در کاربری این صنعت مادر را دارا می‌باشند، تا حد امکان توضیح داده‌ام.

 

واجب است از تمام مسئولین نیروگاه، متخصصین قسمت معاونت مهندسی و قسمت آموزش که امکان این مهم را فراهم ساختند کمال سپاس و قدردانی ابراز نمایم.

 

مقدمه

 

انسان همواره برای رفاه زندگی خود در تکاپو بوده و هست. ابتدا نیروی ماهیچه‌ای را امتحان کرد که با کهولت سن رفته رفته فرسایش می‌یافت.

 

سپس انرژی باد و در کنار آن از انرژی پتانسیل آب استفاده نمود. با گذشت زمان دید بازتری پیدا کرد که باعث درک انرژی بخار شد. استفاده از انواع انرژی همچون: انرژی شیمیایی، جزر و مد دریاها، انرژی هیدرولیکی، هسته‌ای و بالاخره انرژی نورانی خورشید را نیز آموخت که همه در خدمت پیشرفت و تکامل انسان می‌باشند. در این میان بهترین نوع انرژی باید دارای خصوصیات کاملی باشد.

 

انرژی الکتریکی یکی از بهترین فرم‌های انرژی می‌باشد زیرا :

 

توزیع و انتقال آن به راحتی و بطور مطمئن صورت می‌گیرد ( انتقال انرژی الکتریکی از طریق خطوط نیرو در مقایسه با حمل سوخت با وسایل نقلیه. ) دستگاههای متنوعی را می‌توان با آن بکار انداخت.راندمان انرژی الکتریکی در تبدیل به انرژی‌های دیگر بالاست ( راندمان یک بخاری الکتریکی % 100 می‌باشد درصورتیکه راندمان یک بخاری نفتی % 50 است. )استفاده از آن هیچگونه آلودگی برای محیط زیست بوجود نمی آورد.

 

برای تأمین انرژی الکتریکی از تبدیل فرمهای دیگر انرژی موجود در طبیعت استفاده می‌شود که در حال حاضر متداول‌ترین آن تبدیل انرژی شیمیایی به الکتریکی است که با استفاده از سوخت فسیلی ( سوخت مایع، گاز، ذغال‌سنگ ) در نیروگاههای بخاری و یا گازی صورت می‌گیرد که با توجه به راندمان بالاتر نیروگاههای بخاری نسبت به گازی قسمت عمده تأمین برق بعهده این نیروگاههاست. در نیروگاههای بخاری سوخت فسیلی در کوره (بویلر)می‌سوزد و انرژی شیمیایی بین پیوندهای خود را به صورت حرارت به آب می‌دهد و آن را به بخار تبدیل می‌کند. بخار حاصل در توربین به انرژی مکانیکی تغییر شکل می‌دهد که با گرداندن ژنراتور انرژی الکتریکی بدست می‌آید. بنابراین فرم تغییر انرژی در نیروگاههای بخاری بصورت زیر است :

 

انرژی الکتریکی                 انرژی مکانیکی                 انرژی گرمایی             انرژی شیمیایی

 

بدیهی است که در این تبدیل انرژی مقداری تلفات وجود دارد که با بهبود طراحیها و پیشرفت تکنولوژی سعی می‌شود مقدار آن کم و حداکثر راندمان ممکن بدست می آید، بطوریکه راندمان نیروگاههای بخاری از 20 % در نیروگاههی قدیمی به حدود 42 % در نیروگاههای مدرن امروزی افزایش یافته است.

 

حال که مقدمه‌ای بر انرژی، علت مصرف انرژی الکتریکی و خلاصه‌ای از کار در نیروگاههای بخاری بیان شد، نظری اجمالی بر روند تولید برق در ایران و تاریخچه نیروگاه حرارتی شهید سلیمی نکاء داشته سپس به توضیح در مورد قسمتهای اصلی نیروگاه نکاء خواهیم پرداخت.


 

 

نیروگاه شهید سلیمی نکاء

 

صنعت برق در ایران بصورت نیروگاههای دیزلی کوچک شبکه‌های توزیع محدود در برخی از شهرهای بزرگ مانند تهران، تبریز و اصفهان در اواخر قرن سیزدهم ( هـ . ش ) و توسط سرمایه‌داران بخش خصوصی آغاز گردید. در اوایل دهه 1340 وزارت نیرو شرکتهای برق منطقه‌ای و سازمان آب و برق خوزستان تشکیل و کشور به 12 منطقه تقسیم شد و بدنبال آن در سال 1348 وزارت نیرو اقدام به تأسیس شرکت توانیر ( شرکت تولید و انتقال نیروی برق ایران ) نمود.

 

ظرفیت کل نیروگاههای حرارتی شرکت توانیر به هنگام تأسیس برابر 415 مگاوات و در سال 1365 با بهره‌گیری از 24 نیروگاه و 139 واحد توربین ** به بیش از 9332 مگا وات رسید.

 

نیروگاه شهید سلیمی نکاء بعنوان یکی از مهمترین سرمایه‌های ملی و از بزرگترین نیروگاههای کشور متشکل از دو بخش مستقل بخاری و گازی در ساحل دریای خزر و در 22 کیلومتری شمال شهرستان نکا قرار دارد.

 

قدرت نامی این نیروگاه 2035 مگا وات می‌باشد که از چهار واحد 440 مگا واتی بخار و دو واحد 13715 مگاواتی گاز حاصل می‌شود.

 

سوخت اصلی واحدهای بخاری، گاز و سوخت کمکی آنها مازوت و سوخت اصلی واحدهای گازی، گاز و سوخت کمکی آنها گازوئیل است.

 



خرید و دانلود پروژه کارآموزی - نیروگاه نکاء


هیدرولیک چیست

هیدرولیک چیست

هیدرولیک به علمی گفته می شود که در آن از نیروی مایعات تحت فشار استفاده    می کنند تا کاری را انجام دهند . به عبارت کلی هیدرولیک یعنی « انجام کارتوسط مایع تحت فشاریاحرکت » کلمه هیدرواززبان یونانی گرفته شده است وهیدرودرزبان یونانی به معنی حرکات مایعات می باشد . انسانها اززمانهای بسیارقدیم باهیدرولیک آشنا بوده اند ولی چون دامنه علم وصنعت گسترده نبوده وافرازهیدرولیک نمی شد . انتقال الوارها یا تنه های درخت روی آب ازمکانی به مکان دیگرکاربری ازنیروی هیدرولیک درقدیم بوده با گذشت زمان استفاده ازنیروی آب برای چرخاندن توربینهای آبی جهت نیروی محرکه آسیاب ابداع دیگری ازکاربرد هیدرولیک بوده است . چرخاندن توربین آبی توسط نیروی آب هیدرولیک سیستم بازاست یعنی آبی که باعث چرخاندن توربین می گردد جاری بوده ومجدداً جهت چرخش توربین استفاده نمی گردد لیکن درهیدرولیک سیستم بسته ازمایعی که تحت فشار است وعمدتاً روغن هیدرولیک می باشد مجدداً استفاده می گردد یعنی روغن فقط یکبار استفاده نمی شود ودریک سیستم بسته که بعداً بیشترتوضیح می دهیم حرکت کرده وبارها کارانجام می دهد مثال ساده سیستم بسته ، جک های روغنی هیدرولیک است که دربالا بردن اتومبیل جهت تعویض چرخ یاتایراستفاده می شود روغن هیدرولیک درون مداربسته قراردارد .

 

این فایل دارای 36 صفحه می باشد.



خرید و دانلود هیدرولیک چیست


تحقیق درباره آشنایی با انواع توربین های بادی و عملکرد آنها

تحقیق درباره آشنایی با انواع توربین های بادی و عملکرد آنها

فرمت فایل : word (قابل ویرایش) تعداد صفحات : 9 صفحه

 

 

 

 

 

 

.توربین های بادی با محور چرخش عمودی

- دارای مدل های گوناگونی است:ساوینوس، داریوس،صفحه ای، کاسه ای و....
- از دو بخش اصلی تشکیل شده اند:یک میله اصلی که رو به باد قرار می گیرند و میله های عمودی دیگری که عمود بر جهت باد کار گذاشته می شوند.

- ساختار بسیار ساده ای دارند.

 

- این سیستم به جهت وزش باد وابسته نیست.

 

توربین های بادی با محور چرخش افقی

- رایج ترند.

- پیچیده ترند.

- گران ترند.

 

- در سرعت های پایین هم کار می کنند و حتی می توان آنها را در جهت وزش باد تنظیم کرد.

- نمای ظاهری آنها سه پره و در مواردی دو پره است.

 

 نحوه کارکرد توربینهای بادی

درست بر عکس پنکه! امروزه این توربین ها می توانند بین 5 تا 6500 کیلو وات برق تولید کنند.

 



خرید و دانلود تحقیق درباره آشنایی با انواع توربین های بادی و عملکرد آنها


پایان نامه سیستم خنک سازی توربین ها

پایان نامه سیستم خنک سازی توربین ها

 مطالب این پست : پایان نامه سیستم خنک سازی توربین ها

   با فرمت ورد (دانلود متن کامل پایان نامه)

پایان نامه : انتخاب یک سیستم خنک سازی توربین گازیBoris Glezer

 

 

 

راه حل های توربین بهینه سازی شده, سان دیگو, کالیفرنیا, U.S.A

این فصل عمدتاً روی موضوعات انتقال جرم و حرارت تمرکز می یابد چون آنها برای خنک سازی مولفه های دستگاه توربین بکار می روند و انتظار می رود که خواننده با اصول مربوطه در این رشته ها آشنایی داشته باشد. تعدادی از کتابهای فوق العاده (1-7) در بررسی این اصول توصیه می شوند که شامل Streeter، دینامیک ها یا متغیرهای سیال Eckert و Drake، تجزیه و تحلیل انتقال جرم و حرارت، Incropera و Dewitt، اصول انتقال حرارت و جرم, Rohsenow و Hartnett، کتاب دستی انتقال حرارت, Kays، انتقال جرم و حرارت همرفتی, Schliching، تئوری لایه مرزی، و Shapiro، دینامیک ها و ترمودینامیک های جریان سیال تراکم پذیر

وقتی یک منبع جامع اطلاعات موجود باشد. مولف این فصل خواننده را به چنین منبعی ارجاع میدهد؛ با این وجود وقتی داده ها در صفحات یا مقالات گوناگون پخش شده باشند, مولف سعی می کند که این داده ها را در این فصل بطور خلاصه بیان نماید.

a- سرعت صورت

b- بعد خطی در عدد دورانی

منطقه مرجع, منطقه حلقوی مسیر گاز

Ag – سطح خارجی لایه نازک هوا

– عدد شناوری

BR,M- سرعت وزش

CP- حرارت ویژه در فشار ثابت

d-قطر هیدرولیک

e- ارتفاع آشفته ساز

-عدد اکرت

g- شتاب گریز از مرکز

FP= پارامتر جریان برای هوای خنک سازی

G= پارامتر ناهمواری انتقال حرارت

Gr= – عدد گراشوف

h- ضریب انتقال حرارت

ht- ضریب انتقال حرارت افزایش یافته با آشفته سازها

-نسبت شار اندازه حرکت

k- رسانایی حرارتی

-رسانایی حرارتی سیال

L-طول مربع

m-سرعت جریان جرم

mc- سرعت جریان خنک سازی

M= – سرعت رمش

Ma= r/a- عدد mach

rpm وN- سرعت پروانه

NUL= hL/kf- عدد Nusselt

Pr= -عدد pradtl

PR= نسبت فشار کمپرسور

Ps=فشار استاتیک

Pt= فشار کل

Ptin-فشار کل ورودی

Q- سرعت انتقال حرارت-سرعت انتقال انرژی

شار حرارتی

P- شیب بام آشفته ساز

r- وضعیت شعاعی

R- شعاع میانگین, شعاع احتراق ساز (کمبوستور), مقاومت, ثابت گاز

Ri-شعاع موضعی پره

Rt- شعاع نوکم پره

Rh=شعاع توپی یا سر لوله پره

Rel= – عدد رینولرز براساس قطر هیدرولیک

ReL= – عدد رینولرز براساس L

Ro= wb/v- عدد دورانی

Ros= 1/Ro- عدد Rossby

S-فاصله سطح نرمال شده

St- عدد Stanton

t- زمان

Tc- دمای هوای خنک سازی و نیز دمای تخلیه کمپرسور

Tf- دمای فیلم سطح

Tg- دمای گاز

Tgin- دمای گاز ورودی

Tm- دمای فلز, و نیز دمای لایه مخلوط سازی

Tref- دمای مرجع

Tst- دمای استاتیک موضعی

Tu- شدت جریان آشفتگی

– نوسان سرعت محوری محلی

uin- سرعت محوری گاز ورودی

u,r,w- جریان اصلی یا مولفه های سرعت محوری جریان خنک سازی در مسیرهای z, y x

w- پهنا

– زوایه شیب جت فیلم

– زاویه بین جت فیلم و محورهای جریان اصلی

– نسبت حرارتی ویژه

– ضریت جمعی ترسمه یا انبساط حرارتی, همواری سطح

– قابلیت انتشار حرارتی گردابی

– قابلیت انتشار اندازه حرکت گردابی

– تاثیر انتقال حرارت

– تاثیر خنک سازی

n- بارزه حرارتی

– ویسکوزیته گاز مطلق

P- چگالی

– حد تنش گسیختگی

w- فرکانس دورانی

زیر نویس ها

aw- دیوار آدیاباتیک

C- خنک کننده

d- براساس قطر لبه هدایت کننده (سیلندر)

f- فیلم

hc- آبشار گرم

o-کل

tuv-توربین

w-دیوار

– جریان اصلی

خنک سازی توربین بعنوان یک تکنولوژی کلیدی برای توسعه موتورهای توربین گازی

عملکرد یک موتور توربین گازی تا حد زیادی تحت تاثیر دمای ورودی توربین می باشد و افزایش عملکرد قابل توجه را می توان با حداکثر دمای ورودی توربین مجاز بدست آورد. از یک نقطه نظر عملکردی احتراق با دمای ورودی توربین در حدود می تواند یک ایده ال به شمار آید چون هیچ کاری برای کمپرس کردن هوای مورد نیاز برای رقیق کردن محصولات احتراقی به هدر نمی رود. بنابراین روند صنعتی جاری, دمای ورودی توربین را به دمای استوکیو سوخت بخصوص بردی موتورهای نظامی, نزدیکتر می کند. با این وجود دماهای فلز مولفه مجاز نمی تواند از کند. برای کارکردن در دماهای گازی بالای این حد, یک سیستم خنک سازی مولفه بسیار موثر مورد نیاز است. پیشرفت در خنک سازی, یکی از ابزار اصلی برای رسیدن به دماهای ورودی توربین بالاتر می‌باشد و این امر به عملکرد اصلاح شده و عمر بهبود یافته توربین منتهی می شود. انتقال حرارت یک عامل طراحی مهم برای همه بخش های یک توربین گاز پیشرفته بخصوص در بخش های توربین و کمبوستور می باشد. در بحث وضعیت طراحی خنک سازی مصنوعی بخش داغ، باید به خاطر داشته باشید که طراح توربین مرتباً تحت فشارهای شدید برنامه زمانبدی توسعه, قابلیت پرداخت, دوام و انواع دیگر محدودیت های درون نظامی می باشد و همه اینها قویاً انتخاب یک طرح خنک سازی را تحت تاثیر قرار میدهند.

چالش های خنک سازی برای دماهای گاز در حال افزایش بطور پیوسته و نسبت فشار کمپرسور

پیشرفت در موتورهای توربین گاز دارای توان ویژه بالا و بازده بالای پیشرفته نوعاً با افزایش در دمای عملکرد و کل نسبت فشار کمپرسور ارزیابی می شود. رایجترین موتورهای تک چرخه ای با نسبت‌های فشار بالاتر و دماهای گاز افزایش یافته به شکل متناسب می تواند توان بیشتری را با همان اندازه و وزن و بازده سوخت موتور کلی بهتر بدست آورد. موتورهای دارای بهبود دهنده ها از لحاظ ترمودینامیکی از نسبت های فشار بالای کمپرسور, بهره نمی برند. آلیاژهای پیشرفته برای لایه ها نازک توربین می تواند به شکلی ایمن در دماهای فلز کمتر از  عمل کرده و آلیاژها برای صفحات و ساختارهای ساکن به محدود می شوند. ولی توربین های گازی مدرن در دماهای ورودی توربین عمل می کنند که در سن بالای این محدوده هاست. همچنین یک تفاوت قابل توجه در دمای عملکردی بین توربین های هواپیمای پیشرفته و توربین های صنعتی وجود دارد. این نتیجه تفاوتهای اصلی در عمر, وزن, کیفیت هوا/ سوخت و محدودیت های مربوط به تابش ها می باشد.

برای موتورهای هوازی پیشرفته, دماهای ورودی پره توربین نزدیک به و نسبت های فشار کمپرسور در حدود 40:1 تبدیل به یک واقعیت شده است. توان ویژه بالا که برای این نوع از موتورها, هدف عمده می باشد, در راستای بهره بالا بدست می‌آید. چنین شرایط اجرایی بطور ذاتی نیازمند نظارت های مرتب موتور و نظارت پیوسته سلامت می باشد.

برای موتورهای صنعتی, الزامات پیشرو, شامل دوام دراز مدت بدون نظارتهای مرتب و تعمیرات کلی می باشد. نوعاً مولفه های صنعتی اصلی حداقل 30000 ساعت بین تعمیرات دوام می آورند و دارای توان بالقوه برای تعمیر گونه ای هستند که میتوان عمر موتور را تا 100000 ساعت توسعه داد. این با عمر مولفه توربین هواپیما که تنها چند هزار ساعت است مقایسه می شود.

این فاکتور و نیز لازم معمول فشار تخلیه کمپرسور که باید کمتر از فشار منبع سوخت خط لوله گاز موجود باشد, به یک مادی ورودی پره توربین تقریباً بالا منتهی می شود. حد TRIT برای یک توربین

گاز صنعتی پیشرفته در دامنه 1260 تا فرمول توسعه می یابد.



خرید و دانلود پایان نامه سیستم خنک سازی توربین ها


دانلود مقاله توربین ها -آموزشگاه نفت و گاز پتروشیمی امیر کبیر

دانلود جزوه جامع موضوعی درباره توربین ها -انواع توربین ،ساختار و کاربرد توربین ها

فرمت فایل:PDF

حجم دانلود فایل: 3.12 مگابایت

پشتیبانی مشتریان و پاسخگویی مشکلات احتمالی: (آیدی تلگرام: @prizmadmin)



خرید و دانلود دانلود مقاله توربین ها -آموزشگاه نفت و گاز پتروشیمی امیر کبیر