تشخیص چهره از روی رنگ پوست افراد پروژه پردازش تصویر با کمک الگوریتم تطابق به کمک پردازش تصویر بر روی عکس های رنگی می باشد.
برای خرید پکیج های ویژه موسسه می توانید به آدرس های زیر مراجعه نمایید.
codeamadenmatlab.rozblog.com/shop دریافت فایلفرمت فایل : word (قابل ویرایش) تعداد صفحات : 28 صفحه
خلاصه :
پردازش تصاویر امروزه بیشتر به موضوع پردازش تصویر دیجیتال گفته میشود که شاخهای از دانش رایانه است که با پردازش سیگنال دیجیتال که نماینده تصاویر برداشته شده با دوربین دیجیتال یا پویش شده توسط پویشگر هستند سر و کار دارد.
پردازش تصاویر دارای دو شاخه عمدهٔ بهبود تصاویر و بینایی ماشین است. بهبود تصاویر در برگیرندهٔ روشهایی چون استفاده از فیلتر محوکننده و افزایش تضاد برای بهتر کردن کیفیت دیداری تصاویر و اطمینان از نمایش درست آنها در محیط مقصد(مانند چاپگر یا نمایشگر رایانه)است، در حالی که بینایی ماشین به روشهایی میپردازد که به کمک آنها میتوان معنی و محتوای تصاویر را درک کرد تا از آنها در کارهایی چون رباتیک و محور تصاویر استفاده شود.
در معنای خاص آن پردازش تصویر عبارتست از هر نوع پردازش سیگنال که ورودی یک تصویر است مثل عکس یا صحنهای از یک فیلم. خروجی پردازشگر تصویر میتواند یک تصویر یا یک مجموعه از نشانهای ویژه یا متغیرهای مربوط به تصویر باشد. اغلب تکنیکهای پردازش تصویر شامل برخورد با تصویر به عنوان یک سیگنال دو بعدی و بکاربستن تکنیکهای استاندارد پردازش سیگنال روی آنها میشود. پردازش تصویر اغلب به پردازش دیجیتالی تصویر اشاره میکند ولی پردازش نوری و آنالوگ تصویر هم وجود دارند. این مقاله در مورد تکنیکهای کلی است که برای همه آنها به کار میرود. در هر سیستمی و با هر عملکردی برای تصمیم گیری به داده های ورودی احتیاج داریم. این ورودی ها میتوانند از یک سنسور صوتی, سنسور فاصله سنج , سنسور مادون قرمز , میکروفن و با تصاویر ارسالی از یه دوربین باشد. امروزه پردازش تصویر بهترین ابزار برای استخراج ویژگی ها و تحلیل موقعیت و در نهایت تصمیم گیری صحیح می باشد. در مورد انسان نیز به همین صورت است, اطلاعات از طریق چشم به مغز ارسال می شوند و مغز با پردازش این اطلاعات تصمیم نهایی را گرفته و فرمان را صادر می کند. هدف از پردازش تصویر پیاده سازی عملکرد ذهن انسان در قبال داده ها و انجام پردازش های خاصی برای استخراج ویژگی مورد نیاز برای رسیدن به هدف از پیش تعیین شده می باشد.
مقدمه :
تاریخچه پردازش تصویر از سال 1964 تاکنون، موضوع پردازش تصویر، رشد فراوانی کرده است. علاوه بر برنامه تحقیقات فضایی، اکنون از فنون پردازش تصویر، در موارد متعددی استفاده می شود. گر چه اغلب این مسائل با هم نامرتبط هستند، اما عموما نیازمند روش هایی هستند که قادر به ارتقای اطلاعات تصویری برای تعبیر و تحلیل انسان باشد. برای نمونه در پزشکی شیوه های رایانه ای Contrast تصویر را ارتقا می دهند یا این که برای تعبیر آسانتر تصاویر اشعه ایکس یا سایر تصاویر پزشکی، سطوح شدت روشنایی را با رنگ، رمز می کنند. متخصصان جغرافیایی نیز از این روش ها یا روش های مشابه برای مطالعه الگوهای آلودگی هوا که با تصویر برداری هوایی و ماهواره ای بدست آمده است، استفاده می کنند. در باستان شناسی نیز روش های پردازش تصویر برای بازیابی عکس های مات شده ای که تنها باقی مانده آثار هنری نادر هستند، مورد استفاده قرار می گیرد. در فیزیک و زمینه های مرتبط، فنون رایانه ای بارها تصاویر آزمایش های مربوط به موضوعاتی نظیر پلاسماهای پرانرژی و تصاویر ریزبینی الکترونی را ارتقا داده اند. کاربردهای موفق دیگری از پردازش تصویر را نیز می توان در نجوم، زیست شناسی، پزشکی هسته ای، اجرای قانون، دفع و صنعت بیان کرد. در اوایل دهه 60 سفینه فضایی رنجر 7 متعلق به ناسا شروع به ارسال تصاویر تلویزیونی مبهمی از سطح ماه به زمین کرد. استخراج جزئیات تصویر برای یافتن محلی برای فرود سفینه آپولو نیازمند اعمال تصمیماتی روی تصاویر بود. این کار مهم به عهده لابراتوار (JPL) Jet Propulsionقرار داده شد. بدین ترتیب زمینه تخصصی پردازش تصاویر رقومی آغاز گردید و مثل تمام تکنولوژیهای دیگر سریعاً استفاده های متعدد پیدا کرد.
عملیات اصلی در پردازش تصویر فشردهسازی تصاویر برای ذخیرهسازی تصاویر باید حجم اطلاعات را تا جایی که ممکن است کاهش داد و اساس تمام روشهای فشردهسازی کنار گذاردن بخشهایی از اطلاعات و دادهها است. ضریب یا نسبت فشردهسازی است که میزان و در صد کنار گذاشتن اطلاعات را مشخص میکند. این روش ذخیرهسازی و انتقال اطلاعات را آسانتر میکند و پهنایباند و فرکانس مورد نیاز کاهش مییابد. امروزه روشهایی متعدد و پیشرفته برای فشردهسازی وجود دارد. فشردهسازی تصویر از این اصل مهم تبعیت میکند که چشم انسان حد فاصل دو عنصر تصویری نزدیک به هم را یکسان دیده و تمایز آنها را نمیتواند تشخیص دهد. همچنین اثر نور و تصویر برای مدت زمان معینی در چشم باقی مانده و از بین نمیرود که این ویژگی در ساخت تصاویر متحرک مورد توجه بودهاست.
در دنیای امروز کاربردهای پردازش تصویر هر روزه در حال افزایش است. در زمینه های پزشکی، رباتیک، و هواشناسی تحقیقات و پژوهش های بسیاری در این زمینه شده است و از کاربرد های آن در این زمینه ها استفاده های بسیاری مشود. اما در مورد کاربرد پردازش تصویر در کشاورزی تحقیقات کمتری صورت گرفته و کاربرهای آن در این زمینه کمتر مورد توجه قرار گرفته است. ما در مقاله ی پیش رو سعی کردیم به منظور بیشتر شناساندن این رشته بیشتر روی کاربرد های پردازش تصویر در شناسایی و دفع آفات تحقیقات خود را انجام دهیم. در مطالب پیش رو سعی بر این بوده است تا در ابتدا موارد کلی و مفاهیم اصلی در رابطه با موضوع یعنی پردازش تصویر آورده شود، مفاهیمی از قبیل خوشه بندی، قطعه بندی، هیستوگرام، تشخیص لبه و دیگر مفاهیمی که برای پیاده سازی و ارائه ی مطالب مورد نیاز است. در قدم بعدی مطالب و مقاله هایی که پیش از این و توسط افراد دیگر در رابطه با موضوع مورد نظر گرد آوری شده است آورده شده، ما از این مقالات برای نتیجه گیری بهتر و ملموس تر کردن موارد جمع آوری شده برای کسانی که پیش از این آشنایی با پردازش تصویر نداشته اند استفاده خواهیم کرد. در قدم سوم نتایج مطالعات و تحقیقات انجام شده برای ارائه ی روشی به صرفه در شناسایی آفات با استفاده از الگوریتم های پردازش تصویر آورده میشود و است مراحل و روش پیاده سازی مطالب ارائه شده آورده خواهد شد.
فهرست :
مفاهیم اصلی در مبحث پردازش تصویر
مقدمه
پردازش تصویر چیست؟
کاربردهای علم پردازش تصویر
آشنایی با مفهوم پیکسل در یک تصویر
آشنایی با مفهوم عمق بیتی
آشنایی با مفهوم بعد یک تصویر
چگونگی تشکیل رنگ در چشم انسان
پردازش تصویر رنگی
آشنایی با انواع مدل های رنگ
مدل رنگ RGB
مدل رنگ CMY
مدل رنگ YIQ
مدل رنگی HIS
روش های پردازش تصویر
تفریق دو تصویر
جمع دو تصویر
مکمل کردن تصویر
آشنایی با مفهوم تشخیص لبه
میانگین گیری از تصویر
هیستوگرام تصویر
تعدیل هیستوگرام
فیلتر کردن تصویر
قطعه بندی و روش های آن
مقدمهای بر خوشه بندی
روشهای خوشه بندی
روشهای خوشه بندی سلسله مراتبی
خوشه بندی با روش SingleLink
روش خوشه بندی KMeans
مشکلات روش خوشه بندی KMeans
الگوریتم خوشه بندی LBG
روش خوشه بندی
روش تقسیم بندی Otsu’s
آشنایی با مفهوم موجک
شبکههای عصبی مصنوعی (Artificial Neural Network ANN)
تازه های پردازش تصویر در شناسایی آفات گیاهی
روش اول: تحلیل تصویر با استفاده از موجک
روش دوم: تشخیص آفات برنج با استفاده از از روش تقسیم بندی اوتسو
روش سوم: استفاده از تصاویر طیفی برای شناسایی درختان تحت تاثیر آفات
بخش دوم
دقت وسرعت در شناسایی و طبقه بندی افات گیاهی
روش چهارم: شناسایی آفات با استفاده از شبکه های عصبی مصنوعی
وارد کردن تصویر
توضیح فضای رنگ L*A*B
مرحله ی اول: وارد کردن تصویر
مرحله ی دوم: تبدیل تصویر از فضای رنگ RGB به فضای L*A*B
مرحله ی سوم: طبقه بندی رنگ های به دست آمده از فضای رنگ L*A*B
مرحله ی چهار: برچسب گذاری پیکسل ها با استفاده از نتایج به دست آمده از روش KMeans
مرحله ی پنج: به دست آوردن تصاویر خوشه بندی شده
مرحله ی شش به دست آوردن هسته ی اصلی
هدف های آینده
منابع
با استفاده از توابع گرافیکی و استفاده از opacity این عملیات انجام میگیرد
تشخیص اشکال هندسی با اسنفاده از ویژگی های تصویر و تقسیم بندی های ناحیه ای اشکال
در صورت داشتن سوال با ما تماس بگیرید:
09132399969
09372583411
محمدرضاکیانی
موسسه نوآوران برتر تهران
...