*
Health is the level of functional or metabolic efficiency of a living organism. In humans it is the ability of individuals or communities to adapt and self-manage when facing physical, mental or social challenges.[1] The World Health Organization (WHO) defined health in its broader sense in its 1948 constitution as "a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity." This definition has been subject to controversy, in particular as lacking operational value and because of the problem created by use of the word "complete" Other definitions have been proposed, among which a recent definition that correlates health and personal satisfaction. Classification systems such as the WHO Family of International Classifications, including the International Classification of Functioning, Disability and Health (ICF) and the International Classification of Diseases (ICD), are commonly used to define and measure the components of health
تعداد اسلاید آن 42 اسلاید آماده و ظاهری زیبا می باشد
چیزی که این مقالات را متمایز کرده است آماده بودن مقالات و ظاهر زیبای اسلایدها می باشد تا خریدار از خرید خود راضی باشد
مقالات را با ورژن office2010 به بالا باز کنید
.
مقدمه
نخستین خانواده چدنهای پر آلیاژ که بیشترین اهمیت را کسب کردند چدنهای نایهارد بودند با زمینه مارتنزینی، کاربیدی، کربن در آنها از 5/2% تا 6/3% متغیر میباشد. در این چدنها تشکیل عنصر اساسی است که به منظور به تعویق افتادن تشکیل پرلیت است و کاهش سرعت بحرانی سرد شدن در رنج 3/3% تا5/0 به کار میرود که نتیجتاً مارتزیت به همراه مقداری آستیت باقیمانده در زمینه ساختار به وجود میآید. کروم در رنج %5/3 – 4/1% اضافه میشود، برای حصول اطمینان از اینکه مازاد کربن آلیاژ به جرم کاربیدهای پایدار میسازد و همچنین از خاصیت گرافیت زایی نیکل نیز جلوگیری به عمل میآید. ترکیب کاربیدها به علاوه مارتنزیت زمینهای با مقاومت سایشی خوبی ایجاد میکند. تعیین درصد عناصر آلیاژی در چدنهای نایهار بستگی دارد به ابعاد قطعه و خواصی که از آن انتظار میرود. زمانیکه مقاومت سایشی خوب و ضربهپذیری پایین مورد نظر باشد کاربیدهای درشتتر انتخاب شده و نتیجتاً درصد کربن بین 6/3 -3/3% انتخاب میشود و زمانیکه قطعه در معرض بارهای ضربهای قرار میگیرد کربن بین 2/3-7/2% متغیر خواهد بود. درصد عناصر بستگی به سرعت سرد شدن و ضخامت قطعه دارد برای قطعات با ضخامت 1 تا 2 اینچ سیکل بین 2/4 – 4/3% برای به تعویق انداختن در تبدیل پرلیتی و اطمینان از تبدیل کامل مارتنزیتی ضروری است. چنانچه ضخامت قطعه بالاتر باشد نیکل از 5/5 – 4% مورد استفاده قرار میگیرد تا پرلیت تشکیل شود.
در نایهارد نوع II چنانچه درصد نیکل پایین باشد پرلیت تشکیل میشود و چنانچه مقدار نیکل زیاد باشد به پایداری استنیت کمک میکند. تفاوت اصلی در بین 4 آلیاژ چدنهای نایهارد در کاربردد آنهاست. در جدول زیر که بر اساس ASTM است مشخصات کلی این 4 کلاس متفاوت نایهارد با هم مقایسه شده است:
M5% %cr % Ni %mn %si %T.c Tape Specify no Specifying body
Min 4/1 5/3 3 A A532
Fe3c
(fecr)7c3
Astm
Max 1 4 5 3/1 8/0 6/3
Min 4/1 5/3 5/2 B
Max 1 4 5 3/1 8/0 3
Min 1/1 7/2 9/2 C
Max 1 5/1 4 3/1 8/0 7/3
Min 7 5 1 5/2 D
Max 1 11 7 3/1 2/2 6/3
مقاومت به ضربه نوع D بسیار بالاتر از سه مورد قبل (A, B, C) میباشد. SI در آن بالاست و نقش کمک کردن به تشکیل کاربید را تسریع میکند چون حلالیت کربن در گاما را کاهش میدهد. چدنهای نیکل- سخت بوفور در عملیات خرد کردن، پودر کردن، نورد کردن، و حمل مواد به کار برده میشوند. دو گروه عمده چدن نیکل سخت وجود دارند، چدنهای با 4% نیکل و چدنهای با 6% نیکل و 9% کروم که معمولاً به نیکل سخت 2 و 4 موسوماند. نوع 2 چدن نیکل سخت شامل کاربیدهای یوتکتیکی M3C لدبوریتی است و بنابراین دارای چقرمگی کمی است در صورتیکه نوع 4 چدن نیکل سخت عمدتاً شامل کاربیدهای ناپیوسته M7C3 است و در نتیجه چقرمگی نیکل سخت 4 بیشتر است. چدن نیکل سخت نوع 2 چقرمگی کمتری دارد عمدتاً در تولید غلطکهای فلز کاری مورد استفاده قرار میگیرد.
متالورژی و کاربرد چدنهای نیکل- سخت نوع 4 تقریباً مشابه چدنهای پرکروم است. اما مشاهده شده است که در کاربردهای خاص مانند گلولههای آسیاب و جدار پوسته آسیابهای سیمان با قطر زیاد که قطعات ریختگی در آن هم تحت سایش و هم ضربات مکرر سنگین قرار دارند نیکل سخت 4 مقاومت لازم برای شکست را ایجاد نمیکند. به طور کلی مقاومت شکست چدنهای پرکروم بیش از چدنهای نیکل سخت 4 است. مشخصهای که سبب ارجحیت بارز چدنهای نوع نیکل سخت 4 در مقایسه با چدنهای پرکروم میشود قابلیت سختیپذیری عالی آن است.
محدودیت استفاده از این نوع چدنها مخصوصاً در نوع 2، مربوط به شبکه پیوسته کاربید آهن میشود که دانههای آستینت رادر خود احاطه کرده است و باعث تردی آن میگردد. همچنین در مقاطع ضخیم این نوع چدنها را نمیتوان تولید نمود زیرا امکان به وجود آمدن گرافیت آزاد و کاهش مقاومت به سایش وجود دارد. دیگر اینکه سختی فاز کاربید آهن از کاربیدهای آلیاژی کمتر است. سمانتیت یا کاربید آهن را میتوان با کاربیدهای دیگر جایگزین نمود به این طریق این امکان وجود دارد که چدنی تولید نمود که فاز کاربید آن از سمانتیت سخت تر بوده و از نظر ساختاری نیز خواص مکانیکی بهتری را عاید نماید.
ساختمان سطح مقطع و تاثیر آن روی خواص مکانیکی:
عواملی که روی خواص این گونه چدنها مخصوصاً بر روی سختی ضربهپذیری آن اثر میگذارند عبارتند از:
1- نوع کاربید
2- شکل و اندازه کاربیدها
3- اندازه دانه ها
4- ساختمان زمینه
فازهای کاربیدی در چدنهای نیکل سخت
ترکیب شیمیایی تمام چدنهای نیکل – سخت طوری انتخاب میشود که بیشتر ساختار به صورت کاربید یوتکتیک و آستنیت جامد شود. مقدار کاربید یوتکتیک که تشکیل میشود و نیز ساختار زمینه به ترکیب شیمیایی چدن بستگی دارند.
تفاوت بین ساختار کاربیدی در انواع 2 و 4 چدنهای نیکل – سخت در شکل زیر نشان داده شده است.
چدن نیکل – سخت نوع 2 دارای ساختار لدبوریتی خاصی است که در آن کاربید M3C در برابر زیر ساختار پیوسته حضور دارد. ساختار کاربیدی علاوه بر اینکه محل مساعدی برای شروع ترک است مسیر بهتری برای اشاعه ترک نیز است. بر عکس چدن نیکل سخت نوع 4 دارای ساختار یوتکتیکی است که در آن کاربیدهای نوع M7C3 به طور ناپیوسته حضور دارند. مزیت این نوع ساختار کاربیدی این است که گر چه کاربید M7C3 به اندازه M3C ترد است ولی ترکهایی که در آن ایجاد میشوند قبل از این که وارد زمینه به مراتب نرمتری شوند نمیتوانند خیلی اشاعه پیدا کنند و به این دلیل چدن نیکل- سخت نوع 4 مقاومت به وضوح بیشتری به شکست دارند تا نوع چدن نیکل سخت 2.
کاربیدهای نوع M7C3 نسبت به کاربیدهای M3C از سختی بیشتری برخوردارند ضمن این که کاربیدهای نوع M7C3 ساختار ظریفتر را ایجاد مینماید که منجر به سختیپذیری بهتر میگردد. کاربیدهای M3C عموماً دارای شبکه پیوسته هستند که باعث میشوند در مقایسه با کاربیدهای M7C3 ضربهپذیری و سختی کمتری داشته باشند.
تمام عناصر آلیاژی موجب افزایش درصد حجمی فاز کاربید در چدنهای نیکل – سخت میشوند. اما تاثیر این عناصر در مقایسه با اثر خود کربن جزئی است. دامنه حجمی کاربید در نوع 4 چدن نیکل- سخت کلی چدنهای نیکل- سخت دخالت دارد.
تاثیر شکل و اندازه کاربیدها
معمولاً ریزتر بودن کاربیدها و یکنواختی آنها نیز خواص ضربه را بهتر میکند لذا استفاده از روشهای انجماد سریع و اضافه کردن پارهای مواد تلقیحی نظیر فرونیتانیوم یا فروکروم کربن به ذوب میتواند ساختاری ظریفتر و یکنواختتر را ترغیب نماید. البته اخیراً با روشهای دیگری نظیر عملیات حرارتی خاص و یا کنترل ترکیب آنالیز توانستهاند شکل کاربیدها را نیز کنترل نماید.
اندازه دانهها
هر قدر اندازه دانهها کوچکتر باشند مقاومت به ضربه را بهبود میبخشد.
ساختمان زمینه:
ساختار زمینه توسط آلیاژی کردن صحیح قطعه با توجه به اندازه آن کنترل میشود. این چدنها درحالت ریخته شده فاقد گرافیت بوده و دارای ساختار شامل کاربیدهای یوتکتیکی با زمینهای که آستنیت در آن غالب است میباشند. در صورتیکه عناصر آلیاژی به مقدار کافی موجود نباشند ممکن است به جای آستنیت مقادیری پرلیت نرمتر یا گرافیت به وجود آید. انجام عملیات آلیاژی کردن سبب ایجاد مقادیر زیادی آستنیت باقیمانده بعد از عملیات حرارتی میشود. به منظور ایجاد حداکثر سختی و مقاومت به سایش عملیات حرارتی انجام میشود تا زمینهای با ساختار مارتنزیت فاقد آستنیت باقمیمانده ایجاد شود. بهترین ترکیب شیمیایی به ابعاد قطعه زیختگی و خواص مورد نظر بستگی داشته و معمولاً در دامنه زیر قرار دارد:
کربن 3/3-6/2%
سیلیسم 2-5/1%
منگز 8/0-6/0%
کروم 9-8%
نیکل 5/5-8/4%
مولیبدن 1-5/0%
با در نظر گرفتن این مطلب که %si + 0/3 % Cr از 1/4 بزرگتر است. مطمئناً توسط این ترکیب به جای کاربیدهای لدبوریتی، کاربیدهای ناپیوسته تشکیل میشوند.
علاوه بر کاربیدها آنچه خواص مکانیکی این نوع چدن را تحت تاثیر قرار میدهد مابقی ساختار است. جهت حصول بهتر مقاومت سایش بهتر است زمینه مارتنزیتی به دست بیاید منتهی محدودیتهای نظیر عدم اطلاع دقیق از نحوه خروج حرارت از قطعه و تاثیر تغییر ضخامت و ترکیب شیمیایی و ... باعث عدم توفیق ریختهگران در به دست آوردن زمینه مارتنزیتی میباشد. مشکل این است که در هنگام سرد کردن تبدیل آستنیت به پرلیت صورت گرفته و حضور پرلیت در جوار کاربید به شدت از مقاومت فرسایشی قطعه میکاهد و کروم به تنهایی برای جلوگیری از این تحول کافی نمیباشد لذا از عناصر آلیاژی مولیبدن، مس و نیکل جهت کاهش سرعت بحرانی سرد شدن میتوان استفاده نمود.
مساله دیگر این است که به دلیل حلالیت زیاد کربن در آستنیت امکان باقی ماندن مقداری آستنیت باقی مانده تا درجه حرارت محیط وجود دارد. در مورد آستنیت باقیمانده دو نظر وجود دارد: در حالیکه صرفاً مقاومت سایشی مطرح است و ضربه وجود ندارد آستنیت باقیمانده نامطلوب تلقی میشود زیرا سختی مجموعه کمتر میشود و در مواردی که سایش توام با ضربه شدید وجود دارد کار سختی در لایه تماس صورت گرفته در حالی که میان قطعه دارای انعطاف بیشتری است در چنین صورت وجود مقداری آستنیت باقی مانده مجاز خواهد بود که مقدار آن باید زیر 5% باشد.
اثر عناصر آلیاژی
کربن: سختی به مقدار زیاد توسط مقدار کاربیدهای موجود، که خود به مقدار کربن بستگی دارد کنترل میشود. در کاربردهایی که حداکثر سختی و مقاومت به بارگذاری ضربهای از اهمیت ثانوی برخوردار است از کربن به مقدار 3/3% استفاده کرد ولی در جایی که ضربات تکراری اعمال میشود باید مقدار کربن در دامنه 6/2 تا 9/2 باشد. جدول زیر اثر مقدار کربن را بر عمر سختی ناشی از ضربه در چدنهای نیکل سخت نوع 4 نشان میدهد.
مقدار کربن % عملیات حرارتی عمر خستگی – ضربهای (تعداد ضربات)
48/3 8 ساعت –0c800 سرد شدن در هوا 648
01/3 8 ساعت –0c800 سرد شدن در هوا 1670
90/2 8 ساعت –0c800 سرد شدن در هوا 3728
60/2 8 ساعت –0c800 سرد شدن در هوا 4590
چقرمگی تحت ضربات تکراری (عمر خستگی ضربهای) بر حسب تعدا ضربات لازم برای شروع شکست در یک گلوله چدنی نیکل سخت به قطر mm60 که مکرراً از ارتفاع m7 بر روی یک سندان فولادی شیبدار میافتد ارزیابی شده است.
جهت حصول حجم مناسب از کاربیدهای m7c3 و ایجاد سختیپذیری لازم در چدنهای نایهارد مقدار آن
Grade 2A Bs2/3 – 7/2% و B2 Grade Bs% 6/3 -2/3 انتخاب میشود. ازدیاد کربن باعث ازدیاد مقدار کاربید شده که سختی قطعه را افزایش میدهد و همچنین تردی را نیز زیادتر میکند. در مقادیر ماقبل یوتکتیک (اگر مقدار کربن یوتکتیک برای 7% کروم حدود 2/3 است) ابتدا مذاب آستنیت جدا شده در تحول یوتکتیک مابقی ذوب به کاربید m7c3 و آستنیت تبدیل میشود که نهایتاً زمینه دارای کاربیدهای محصور در زمینه آستنیت است. در حوالی کربن یوتکتیک ساختمان یکنواختی از کاربید m7c3 و آستنیت یوتکتیکی ظاهر میشود اما چنانچه مقدار کربن بیشتر از یوتکتیک باشد از مذاب کاربیدهای m7c3 جدا شده که دانههای یوتکتیکی را احاطه کرده است. چنانچه مقدار کربن خیلی پایین باشد با تشکیل کاربید کروم درصد کربن آستنیت به میزان قابل توجهی کاهش مییابد و لذا در تبدیلات بعدی نخواهد توانست سختیپذیری کافی را داشته باشد.
فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد
تعداد صفحات این مقاله 40 صفحه
پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید
نوع فایل : Word
تعداد صفحات : 81
شرح مختصر :
عموماً یک دانشگاه به لحاظ آموزشی به تعدادی انستیتو تقسیم بندی شده است که در هر انستیتو واحد های مربوط به آن رشته در آن بخش ارائه می شود . واحد های جاری ارائه شده در یک ترم در پایگاه داده های در دسترس هر دانشجو قرار میگیرد. دانشجو با توجه به واحد های ارائه شده درترم به انتخاب واحد های مورد نظر بر مبنای یک سری معیارها و محدودیت ها و شرایط مقرر که اساس و قوانین انتخاب واحد یک دانشجو را در بر میگیرد، اقدام به انتخاب واحد می کند .
فهرست :
فاز اول پروژه :
مقدمه
پرسش و پاسخ
صورت جلسه
توسعه تابع کیفیت
روابط بین موجودیتها
فرهنگ داده ها
توصیف داده ها
نمودار جریان داده ها
مشخصه فرآیند
نمودار تغییر حالت و مشخصه کنترل
فاز دوم پروژه:
طراحی داده های سیستم
طراحی معماری سیستم
طراحی در سطح مولفه
طراحی در سطح کاربر
فاز سوم پروژه:
طراحی شی گرا
نمودار مورد کاربرد
نمودار فعالیت
نمودار همکاری انتخاب واحد
نمودار همکاری حسابداری
نمودار ترتیب انتخاب واحد
نمودار ترتیب حسابداری
نمودار کلاس
نمودار حالت انتخاب واحد
نمودار حالت حسابداری
نمودار مولفه
نمودار توزیع (نصب و راه اندازی)
نویسندگان:[ فریدون ضحاکی ] - کارشناس ارشد مهندسی ساخت و تولید، مدرس دانشگاه علمی کاربردی مرند[ امیر مصطفی پور ] - استادیار دانشکده فنی- مهندسی مکانیک، دانشگاه تبریز
خلاصه مقاله:
در کلیه سازه های تولید شده توسط یکی از روشهای جوشکاری ذوبی، تشهای پسماند و عیوب ایجاد شده در طی فرآیند جوشکاری تاثیر زیادی بر روی استحکام جوش و چقرمگی شکست آن خواهند داشت. برای شبیه سازی فرایند جوشکاری پرتو لیزر از مدل المان محدود سه بعدی استفاده شده و در محیط نرم افزار ABAQUS مدلسازی شد. هدف از این کار مطالعه پاسخ تحلیل حرارتی-مکانیکی ورقهای نازک ساخته شده از آلیاژ آلومینیم 6056T4 بوده که در ساخت بدنه هواپیما با جوشکاری پرتو لیزر تحت شرایط مرزی و بارگذاری پیچیده استفاده می شود. شار حرارتی بصورت ترکیبی از منبع دایره ای با توزیع گوسین با مرکز واقع بر روی سطح بالای قطعه کار و منبع خطی در امتداد ضخامت قطعه کار از طریق نوشتن سابروتین اعم ال شد . جوشکاری بصورت تک پاسه با پرتو لیزر روی ورقهای مختلفی بصورت تجربی اجرا شد. ابتدا نتایج حاصل از تحلیل حرارتی در نقاط مختلف اندازه گیری و در نهایت تنشهای پسماند بررسی شد. برای ارزیابی صحت مدل شبیه سازی شده، نتایج بدست آمده با نتایج تجربی مقایسه شد. مقایسه نتایج تطابق خوبی را بین روش عملی و شبیه سازی شده نشان می دهد.
کلمات کلیدی:
شبیه سازی کامپیوتری، جوشکاری پرتو لیزر، تنشهای پسماند، ورق آلومینیمی